Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Oct;85(2):548–553. doi: 10.1104/pp.85.2.548

Growth Rates and Carbohydrate Fluxes within the Elongation Zone of Tall Fescue Leaf Blades 1

Hans Schnyder 1,2, Curtis J Nelson 1
PMCID: PMC1054292  PMID: 16665733

Abstract

Investigations were performed to better understand the carbon economy in the elongation zone of tall fescue leaf blades. Plants were grown at constant 21°C and continuous 300 micromoles per square meter per second photosynthetic photon flux density where leaf elongation was steady for several days. Elongation occurred in the basal 20 mm of the blade (0-20 millimeters above the ligule) and was maximum at 9 to 12 millimeters. Eight 3-millimeter long segments were sampled along the length of the elongation zone and analyzed for water-soluble carbohydrates. Sucrose concentration was high in the zone of cell division (0-6 millimeters) whereas monosaccharide concentration was high at and distal to the location where cell elongation terminated (20 millimeters). Fructan concentration increased in the basal part, then remained constant at about 85% of the total mass of water-soluble carbohydrates through the remainder of the elongation zone. Data on spatial distribution of growth velocities and substance contents (e.g. microgram fructan per millimeter leaf length) were used to calculate local net rates of substance deposition (i.e. excess rates of substance synthesis and/or import over substance degradation and/or export) and local rates of sucrose import. Rates of sucrose import and net deposition of fructan were positively associated with local elongation rate, whereas net rates of sucrose deposition were high in the zone of cell division and those of monosaccharide were high near the termination of elongation. At the location of most active elongation imported sucrose (29.5 milligrams per square decimeter per hour) was used largely for synthesis of structural components (52%) and fructan (41%).

Full text

PDF
548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Giaquinta R. T., Lin W., Sadler N. L., Franceschi V. R. Pathway of Phloem unloading of sucrose in corn roots. Plant Physiol. 1983 Jun;72(2):362–367. doi: 10.1104/pp.72.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Schnyder H., Nelson C. J., Coutts J. H. Assessment of spatial distribution of growth in the elongation zone of grass leaf blades. Plant Physiol. 1987 Sep;85(1):290–293. doi: 10.1104/pp.85.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Silk W. K., Walker R. C., Labavitch J. Uronide Deposition Rates in the Primary Root of Zea mays. Plant Physiol. 1984 Mar;74(3):721–726. doi: 10.1104/pp.74.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Volenec J. J., Nelson C. J. Carbohydrate Metabolism in Leaf Meristems of Tall Fescue : II. Relationship to Leaf Elongation Rates Modified by Nitrogen Fertilization. Plant Physiol. 1984 Mar;74(3):595–600. doi: 10.1104/pp.74.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Volenec J. J., Nelson C. J. Carbohydrate metabolism in leaf meristems of tall fescue : I. Relationship to genetically altered leaf elongation rates. Plant Physiol. 1984 Mar;74(3):590–594. doi: 10.1104/pp.74.3.590. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES