Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Nov;85(3):601–604. doi: 10.1104/pp.85.3.601

Breakdown of Phosphatidylinositol during the Elicitation of Phytoalexin Production in Cultured Carrot Cells

Fumiya Kurosaki 1, Yutaka Tsurusawa 1, Arasuke Nishi 1
PMCID: PMC1054306  PMID: 16665744

Abstract

Elicitor-induced production of the phytoalexin, 6-methoxymellein, in cultured carrot cells was appreciably depressed by the calmodulin inhibitors N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and trifluoperazine. An inhibitor of Ca2+-phospholipid dependent protein kinase (protein kinase C), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, also inhibited the phytoalexin production in carrot. Both phorbol ester and synthetic diacylglycerol, activators of protein kinase C, showed an ability to induce 6-methoxymellein production even in the absence of elicitor. Phosphatidylinositol-degrading phospholipase activity increased in elicitor-treated carrot cells without a notable lag, and a product of this reaction, inositol trisphosphate, appeared to increase in parallel with the phospholipase activity. These results suggest that breakdown of phosphatidylinositol takes place in the elicitor-treated carrot cells. The messengers liberated from the phospholipid in the plasma membrane may participate in the elicitation process by controlling the activity of protein kinase C-like enzyme(s) and Ca2+-mediated processes including calmodulin.

Full text

PDF
601

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Boss W. F., Massel M. O. Polyphosphoinositides are present in plant tissue culture cells. Biochem Biophys Res Commun. 1985 Nov 15;132(3):1018–1023. doi: 10.1016/0006-291x(85)91908-4. [DOI] [PubMed] [Google Scholar]
  3. Bruce R. J., West C. A. Elicitation of Casbene Synthetase Activity in Castor Bean : THE ROLE OF PECTIC FRAGMENTS OF THE PLANT CELL WALL IN ELICITATION BY A FUNGAL ENDOPOLYGALACTURONASE. Plant Physiol. 1982 May;69(5):1181–1188. doi: 10.1104/pp.69.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis K. R., Lyon G. D., Darvill A. G., Albersheim P. Host-Pathogen Interactions : XXV. Endopolygalacturonic Acid Lyase from Erwinia carotovora Elicits Phytoalexin Accumulation by Releasing Plant Cell Wall Fragments. Plant Physiol. 1984 Jan;74(1):52–60. doi: 10.1104/pp.74.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Michell R. H. Stimulated inositol lipid metabolism: an introduction. Cell Calcium. 1982 Oct;3(4-5):285–294. doi: 10.1016/0143-4160(82)90017-3. [DOI] [PubMed] [Google Scholar]
  6. Nakamura T., Ui M. Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. A possible involvement of the toxin-specific substrate in the Ca2+-mobilizing receptor-mediated biosignaling system. J Biol Chem. 1985 Mar 25;260(6):3584–3593. [PubMed] [Google Scholar]
  7. Wollheim C. B., Biden T. J. Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J Biol Chem. 1986 Jun 25;261(18):8314–8319. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES