Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Dec;85(4):906–909. doi: 10.1104/pp.85.4.906

Polyamine Oxidase from Water Hyacinth

Purification and Properties

Hiroshi Yanagisawa 1, Akemi Kato 1, Sawa Hoshiai 1, Akiyoshi Kamiya 1, Naohiro Torii 1
PMCID: PMC1054367  PMID: 16665829

Abstract

Polyamine oxidase was purified to homogeneity from leaves of water hyacinth by the criterion of sodium dodecyl sulfate gel electrophoresis (SDS disc PAGE). The enzyme showed a high specificity for spermidine and spermine (Km values 28 micromolar and 20 micromolar, respectively). The optimal pH of the enzyme for both spermidine and spermine was 6.5. The molecular weight of the enzyme estimated by Sephadex G-200 gel filtration was 87,000, while SDS disc PAGE gave a single band at the molecular weight of 60,000. Octamethylenediamine and quinacrine were strong inhibitors of the enzyme, but p-chloromercuribenzoate was without effect. A prosthetic group in the enzyme was identified as flavin adenine dinucleotide.

Full text

PDF
906

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal. 1970;18:1–53. [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
  4. Kaur-Sawhney R., Flores H. E., Galston A. W. Polyamine oxidase in oat leaves: a cell wall-localized enzyme. Plant Physiol. 1981 Aug;68(2):494–498. doi: 10.1104/pp.68.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Morgan D. M. Polyamine oxidases. Biochem Soc Trans. 1985 Apr;13(2):322–326. doi: 10.1042/bst0130322. [DOI] [PubMed] [Google Scholar]
  7. Okada M., Kawashima S., Imahori K. Affinity chromatography of putrescine oxidase from Micrococcus rubens and spermidine dehydrogenase from Serratia marcescens. J Biochem. 1979 May;85(5):1225–1233. [PubMed] [Google Scholar]
  8. Smith T. A. Polyamine oxidase in higher plants. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1452–1456. doi: 10.1016/0006-291x(70)90549-8. [DOI] [PubMed] [Google Scholar]
  9. Tabor C. W., Kellogg P. D. Identification of flavin adenine dinucleotide and heme in a homogeneous spermidine dehydrogenase from Serratia marcescens. J Biol Chem. 1970 Oct 25;245(20):5424–5433. [PubMed] [Google Scholar]
  10. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES