Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Dec;85(4):996–999. doi: 10.1104/pp.85.4.996

Active Glucose Transport and Proton Pumping in Tonoplast Membrane of Zea mays L. Coleoptiles Are Inhibited by Anti-H+-ATPase Antibodies

Thomas Rausch 1,2,3,1, Dennis N Butcher 1,2,3, Lincoln Taiz 1,2,3
PMCID: PMC1054382  PMID: 16665844

Abstract

A tonoplast enriched fraction was obtained from Zea mays L. coleoptiles by isopycnic centrifugation of microsomal membranes in a sucrose step gradient. At the 18/26% interface chloride-stimulated and nitrate-inhibited proton pumping activity coincided with a Mg2+-ATP dependent accumulation of 3-O-methyl-d-glucose (OMG) as determined by a membrane filtration technique using 14C-labeled substrate. OMG transport showed an apparently saturable component with a Km of 110 micromolar, and was completely inhibited by 10 micromolar carbonyl cyanide m-chlorophenylhydrazone. Polyclonal antibodies against solubilized native tonoplast H+-ATPase and its 62 and 72 kilodalton subunits were assayed for their ability to inhibit proton pumping and OMG accumulation. Antibodies against both the native enzyme and the putative catalytic subunit (72 kilodalton) strongly inhibited proton pumping and OMG transport whereas antibodies against the 62 kilodalton subunit had only a slight effect on both processes.

Full text

PDF
996

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briskin D. P., Thornley W. R., Wyse R. E. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot : II. Evidence for a Sucrose/H-Antiport. Plant Physiol. 1985 Aug;78(4):871–875. doi: 10.1104/pp.78.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chanson A., McNaughton E., Taiz L. Evidence for a KCl-Stimulated, Mg-ATPase on the Golgi of Corn Coleoptiles. Plant Physiol. 1984 Oct;76(2):498–507. doi: 10.1104/pp.76.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chanson A., Taiz L. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles. Plant Physiol. 1985 Jun;78(2):232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kasahara M., Inui K., Takano M., Hori R. Distinction of three types of D-glucose transport systems in animal cells. Biochem Biophys Res Commun. 1985 Oct 30;132(2):490–496. doi: 10.1016/0006-291x(85)91160-x. [DOI] [PubMed] [Google Scholar]
  5. Krishnan H. B., Blanchette J. T., Okita T. W. Wheat invertases : characterization of cell wall-bound and soluble forms. Plant Physiol. 1985 Jun;78(2):241–245. doi: 10.1104/pp.78.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lin W., Schmitt M. R., Hitz W. D., Giaquinta R. T. Sugar transport in isolated corn root protoplasts. Plant Physiol. 1984 Dec;76(4):894–897. doi: 10.1104/pp.76.4.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mandala S., Taiz L. Characterization of the subunit structure of the maize tonoplast ATPase. Immunological and inhibitor binding studies. J Biol Chem. 1986 Sep 25;261(27):12850–12855. [PubMed] [Google Scholar]
  8. Mandala S., Taiz L. Partial purification of a tonoplast ATPase from corn coleoptiles. Plant Physiol. 1985 Jun;78(2):327–333. doi: 10.1104/pp.78.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neeb M., Fasold H., Koepsell H. Identification of the D-glucose binding polypeptide of the renal Na+-D-glucose cotransporter with a covalently binding D-glucose analog. FEBS Lett. 1985 Mar 11;182(1):139–144. doi: 10.1016/0014-5793(85)81171-6. [DOI] [PubMed] [Google Scholar]
  10. Rausch T., Ziemann-Roth M., Hilgenberg W. ADP Is a Competitive Inhibitor of ATP-Dependent H Transport in Microsomal Membranes from Zea mays L. Coleoptiles. Plant Physiol. 1985 Apr;77(4):881–885. doi: 10.1104/pp.77.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Simpson I. B., Karnieli E., Hissin P. J., Smith U., Cushman S. W. Mechanism of insulin's stimulatory action on glucose transport in the isolated rat adipose cell. Soc Gen Physiol Ser. 1985;39:43–55. [PubMed] [Google Scholar]
  12. Thom M., Komor E., Maretzki A. Vacuoles from Sugarcane Suspension Cultures : II. CHARACTERIZATION OF SUGAR UPTAKE. Plant Physiol. 1982 Jun;69(6):1320–1325. doi: 10.1104/pp.69.6.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thom M., Maretzki A. Group translocation as a mechanism for sucrose transfer into vacuoles from sugarcane cells. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4697–4701. doi: 10.1073/pnas.82.14.4697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wagner G. J. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 1979 Jul;64(1):88–93. doi: 10.1104/pp.64.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES