Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Jan;86(1):241–245. doi: 10.1104/pp.86.1.241

Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron

Jeffrey C Suttle 1,2
PMCID: PMC1054461  PMID: 16665874

Abstract

The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.

Full text

PDF
241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer E. M. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976 Sep;58(3):268–271. doi: 10.1104/pp.58.3.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beyer E. M. Abscission: the initial effect of ethylene is in the leaf blade. Plant Physiol. 1975 Feb;55(2):322–327. doi: 10.1104/pp.55.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burg S. P., Burg E. A. Inhibition of polar auxin transport by ethylene. Plant Physiol. 1967 Sep;42(9):1224–1228. doi: 10.1104/pp.42.9.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davenport T. L., Morgan P. W., Jordan W. R. Auxin Transport as Related to Leaf Abscission during Water Stress in Cotton. Plant Physiol. 1977 Apr;59(4):554–557. doi: 10.1104/pp.59.4.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
  6. Katekar G. F., Geissler A. E. Auxin Transport Inhibitors: IV. EVIDENCE OF A COMMON MODE OF ACTION FOR A PROPOSED CLASS OF AUXIN TRANSPORT INHIBITORS: THE PHYTOTROPINS. Plant Physiol. 1980 Dec;66(6):1190–1195. doi: 10.1104/pp.66.6.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katekar G. F., Navé J. F., Geissler A. E. Phytotropins: III. NAPHTHYLPHTHALAMIC ACID BINDING SITES ON MAIZE COLEOPTILE MEMBRANES AS POSSIBLE RECEPTOR SITES FOR PHYTOTROPIN ACTION. Plant Physiol. 1981 Dec;68(6):1460–1464. doi: 10.1104/pp.68.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Morgan P. W., Durham J. I. Abscission: potentiating action of auxin transport inhibitors. Plant Physiol. 1972 Sep;50(3):313–318. doi: 10.1104/pp.50.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morgan P. W., Gausman H. W. Effects of ethylene on auxin transport. Plant Physiol. 1966 Jan;41(1):45–52. doi: 10.1104/pp.41.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morgan P. W., Jordan W. R., Davenport T. L., Durham J. I. Abscission responses to moisture stress, auxin transport inhibitors, and ethephon. Plant Physiol. 1977 Apr;59(4):710–712. doi: 10.1104/pp.59.4.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Suttle J. C. Cytokinin-induced ethylene biosynthesis in nonsenescing cotton leaves. Plant Physiol. 1986 Dec;82(4):930–935. doi: 10.1104/pp.82.4.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Suttle J. C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985 Jun;78(2):272–276. doi: 10.1104/pp.78.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES