Abstract
Vicianin hydrolase, which catalyzes the hydrolysis of vicianin (Km, 4.9 millimolar) to (R)-mandelonitrile and vicianose at an optimum pH of 5.5, was extensively purified from the young fronds and fiddleheads of the squirrel's foot fern (Davallia trichomanoides Blume) using DEAE-cellulose and Ultrogel HA chromatography. The native molecular weight of the enzyme was 340,000, and the isoelectric point was 4.6 to 4.7. SDS-PAGE analysis yielded three polypeptides with molecular weights of 56,000, 49,000, and 32,500. The enzyme hydrolyzed only a narrow range of glycosides and, among cyanogenic glycosides, exhibited a strict requirement for (R)-epimers and a preference for disaccharides over monosaccharides. (R)-Amygdalin, (R)-prunasin and p-nitrophenyl-β-d-glucoside were hydrolyzed at 27, 14, and 3%, respectively, of the rate of vicianin hydrolysis. Mixed substrate studies showed that (R)-vicianin, (R)-prunasin, and p-nitrophenyl-β-d-glucoside competed for the same active site. The enzyme was significantly inhibited by castanospermine, δ-gluconolactone, and p-chloromercuriphenylsulfonate. Failure to recognize concanavalin A-Sepharose 4B and to stain with periodic acid-Schiff reagent indicated that the enzyme was not a glycoprotein.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Conchie J., Hay A. J., Strachan I., Levvy G. A. Inhibition of glycosidases by aldonolactones of corresponding configuration: Preparation of (1-->5)-lactones by catalytic oxidation of pyranoses and study of their inhibitory properties. Biochem J. 1967 Mar;102(3):929–941. doi: 10.1042/bj1020929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan T. W., Conn E. E. Isolation and characterization of two cyanogenic beta-glucosidases from flax seeds. Arch Biochem Biophys. 1985 Dec;243(2):361–373. doi: 10.1016/0003-9861(85)90513-2. [DOI] [PubMed] [Google Scholar]
- Feigl F., Anger V. Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst. 1966 Apr;91(81):282–284. doi: 10.1039/an9669100282. [DOI] [PubMed] [Google Scholar]
- HELFERICH B., KLEINSCHMIDT T. ZUR KENNTNIS DES SUESSMANDELEMULSINS. Hoppe Seylers Z Physiol Chem. 1965;340:31–45. doi: 10.1515/bchm2.1965.340.1-2.31. [DOI] [PubMed] [Google Scholar]
- Hösel W., Tober I., Eklund S. H., Conn E. E. Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) moench seedlings. Arch Biochem Biophys. 1987 Jan;252(1):152–162. doi: 10.1016/0003-9861(87)90019-1. [DOI] [PubMed] [Google Scholar]
- Kuroki G. W., Poulton J. E. Comparison of kinetic and molecular properties of two forms of amygdalin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Arch Biochem Biophys. 1986 Jun;247(2):433–439. doi: 10.1016/0003-9861(86)90603-x. [DOI] [PubMed] [Google Scholar]
- Kuroki G. W., Poulton J. E. Isolation and characterization of multiple forms of prunasin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Arch Biochem Biophys. 1987 May 15;255(1):19–26. doi: 10.1016/0003-9861(87)90290-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- RAABO E., TERKILDSEN T. C. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest. 1960;12(4):402–407. doi: 10.3109/00365516009065404. [DOI] [PubMed] [Google Scholar]
- Saul R., Chambers J. P., Molyneux R. J., Elbein A. D. Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch Biochem Biophys. 1983 Mar;221(2):593–597. doi: 10.1016/0003-9861(83)90181-9. [DOI] [PubMed] [Google Scholar]
- Selmar D., Lieberei R., Biehl B., Voigt J. Hevea Linamarase-A Nonspecific beta-Glycosidase. Plant Physiol. 1987 Mar;83(3):557–563. doi: 10.1104/pp.83.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]