Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Apr;86(4):1057–1063. doi: 10.1104/pp.86.4.1057

In Vitro Synthesis and Processing of Tomato Fruit Polygalacturonase 1

Dean DellaPenna 1, Alan B Bennett 1
PMCID: PMC1054627  PMID: 16666031

Abstract

The in vitro processing of tomato fruit polygalacturonase (PG) (poly[1,4-α-d-galacturonide]glucanohydrolase, EC 3.2.1.15) was studied. Complete chemical deglycosylation of a mixture of mature, purified PG 2A and PG 2B isozymes (45 and 46 kilodaltons; respectively) with trifluoromethane sulfonic acid yielded a single polypeptide of 42 kilodaltons. Similarly, N-terminal amino acid sequencing of the PG 2A/2B isozyme mixture yielded a single 21 amino acid N-terminal sequence, suggesting that the two isozymes result from differential post-translational processing of a single polypeptide. Translation of PG mRNA in vitro results in the synthesis of a single polypeptide with an apparent molecular weight of 54 kilodaltons. Nucleotide sequence analysis of a full-length PG cDNA clone indicates that the large size difference between the PG in vitro translation product and the mature isozymes is due to the presence of a 71 amino acid (8.2 kilodaltons) domain at the N-terminus of in vitro translated PG, consisting of a hydrophobic signal sequence followed by a highly charged prosequence. To determine the precise cleavage site of the signal sequence, PG mRNA was translated in vitro in the presence of canine pancreas microsomal membranes. This resulted in the production of two glycosylated PG processing intermediates with apparent molecular weights of 58 and 61 kilodaltons. The PG processing intermediates were shown to be sequestered within the lumen of the microsomal membranes by protease protection and centrifugational analysis. Deglycosylation of the PG processing intermediates with endoglycosidase H yielded a single polypeptide with an apparent molecular weight of 54 kilodaltons. The production of two distinct, glycosylated processing intermediates from the single in vitro translated PG polypeptide suggests a mechanism by which the differential glycosylation observed for the mature PG 2A and PG 2B isozymes may occur. Edman degradation of 3H-labeled 58 and 61 kilodalton PG processing intermediates indicates that the site of signal sequence cleavage is after amino acid 24 (serine). These results suggest that the proteolytic processing of PG occurs in at least two steps, the first being the co-translational removal of the 24 amino acid signal sequence and the second being the presumed post-translational removal of the remaining highly charged 47 amino acid prosequence.

Full text

PDF
1057

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggs M. S., Harriman R. W., Handa A. K. Changes in Gene Expression during Tomato Fruit Ripening. Plant Physiol. 1986 Jun;81(2):395–403. doi: 10.1104/pp.81.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dellapenna D., Alexander D. C., Bennett A. B. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6420–6424. doi: 10.1073/pnas.83.17.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  4. Hattori T., Ichihara S., Nakamura K. Processing of a plant vacuolar protein precursor in vitro. Eur J Biochem. 1987 Aug 3;166(3):533–538. doi: 10.1111/j.1432-1033.1987.tb13546.x. [DOI] [PubMed] [Google Scholar]
  5. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  6. Johnson L. M., Bankaitis V. A., Emr S. D. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell. 1987 Mar 13;48(5):875–885. doi: 10.1016/0092-8674(87)90084-5. [DOI] [PubMed] [Google Scholar]
  7. Mueckler M., Lodish H. F. The human glucose transporter can insert posttranslationally into microsomes. Cell. 1986 Feb 28;44(4):629–637. doi: 10.1016/0092-8674(86)90272-2. [DOI] [PubMed] [Google Scholar]
  8. Rothblatt J. A., Meyer D. I. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell. 1986 Feb 28;44(4):619–628. doi: 10.1016/0092-8674(86)90271-0. [DOI] [PubMed] [Google Scholar]
  9. Rothman J. E., Katz F. N., Lodish H. F. Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell. 1978 Dec;15(4):1447–1454. doi: 10.1016/0092-8674(78)90068-5. [DOI] [PubMed] [Google Scholar]
  10. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sturm A., Johnson K. D., Szumilo T., Elbein A. D., Chrispeels M. J. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides. Plant Physiol. 1987 Nov;85(3):741–745. doi: 10.1104/pp.85.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  13. Tucker G. A., Robertson N. G., Grierson D. Changes in polygalacturonase isoenzymes during the 'ripening' of normal and mutant tomato fruit. Eur J Biochem. 1980 Nov;112(1):119–124. doi: 10.1111/j.1432-1033.1980.tb04993.x. [DOI] [PubMed] [Google Scholar]
  14. Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984 Aug;38(1):5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
  15. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES