Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Apr;86(4):1205–1209. doi: 10.1104/pp.86.4.1205

Effects of Elevated CO2 Concentrations on Glycolysis in Intact `Bartlett' Pear Fruit

Eduardo L Kerbel 1, Adel A Kader 1, Roger J Romani 1
PMCID: PMC1054652  PMID: 16666055

Abstract

Mature intact `Bartlett' pear fruit (Pyrus communis L.) were stored under a continuous flow of air or air + 10% CO2 for 4 days at 20°C. Fruit kept under elevated CO2 concentrations exhibited reduced respiration (O2 consumption) and ethylene evolution rates, and remained firmer and greener than fruit stored in air. Protein content, fructose 1,6-bisphosphate levels, and ATP:phosphofructokinase and PPi:phosphofructokinase activities declined, while levels of fructose 6-phosphate and fructose 2,6-bisphosphate increased in fruit exposed to air + 10% CO2. These results are discussed in light of a possible inhibitory effect of CO2 at the site of action of both phosphofructokinases in the glycolytic pathway, which could account, at least in part, for the observed reduction in respiration.

Full text

PDF
1205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. CHANCE B., HOLMES W., HIGGINS J., CONNELLY C. M. Localization of interaction sites in multi-component transfer systems: theorems derived from analogues. Nature. 1958 Nov 1;182(4644):1190–1193. doi: 10.1038/1821190a0. [DOI] [PubMed] [Google Scholar]
  3. Cséke C., Weeden N. F., Buchanan B. B., Uyeda K. A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4322–4326. doi: 10.1073/pnas.79.14.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frenkel C., Klein I., Dilley D. R. Protein synthesis in relation to ripening of pome fruits. Plant Physiol. 1968 Jul;43(7):1146–1153. doi: 10.1104/pp.43.7.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kobr M. J., Beevers H. Gluconeogenesis in the castor bean endosperm: I. Changes in glycolytic intermediates. Plant Physiol. 1971 Jan;47(1):48–52. doi: 10.1104/pp.47.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mitz M. A. CO2 biodynamics: a new concept of cellular control. J Theor Biol. 1979 Oct 22;80(4):537–551. doi: 10.1016/0022-5193(79)90092-4. [DOI] [PubMed] [Google Scholar]
  7. Perez-Trejo M. S. Mobilization of respiratory metabolism in potato tubers by carbon dioxide. Plant Physiol. 1981 Mar;67(3):514–517. doi: 10.1104/pp.67.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smyth D. A., Wu M. X., Black C. C. Pyrophosphate and fructose 2,6-bisphosphate effects on glycolysis in pea seed extracts. Plant Physiol. 1984 Oct;76(2):316–320. doi: 10.1104/pp.76.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Solomos T., Laties G. G. Similarities between the Actions of Ethylene and Cyanide in Initiating the Climacteric and Ripening of Avocados. Plant Physiol. 1974 Oct;54(4):506–511. doi: 10.1104/pp.54.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES