Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 May;87(1):83–88. doi: 10.1104/pp.87.1.83

A Mutant of Arabidopsis thaliana that Exhibits Chlorosis in Air but Not in Atmospheres Enriched in CO21

Nancy N Artus 1, Chris Somerville 1
PMCID: PMC1054703  PMID: 16666132

Abstract

A mutant of Arabidopsis thaliana (L.) Heynh. which requires a high concentration (2% by volume) of atmospheric CO2 for growth has been isolated. Unlike previous mutants of this type, this line does not have any apparent defect in photosynthetic CO2-fixation, photorespiration, or photosynthetic electron transport. The mutant is abnormally susceptible to pigment bleaching in air but not in 2% CO2. The presence of normal or above-normal levels of antioxidants, carotenoids, and enzymes involved in reactive oxygen detoxification suggests that the mutant is equipped to detoxify activated oxygen species. Although it was not possible to establish a biochemical basis for the lesion, the properties of the mutant suggest the existence of a previously unidentified role for CO2.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  2. Blubaugh D. J., Govindjee Bicarbonate, not CO2, is the species required for the stimulation of Photosystem II electron transport. Biochim Biophys Acta. 1986 Jan 28;848(1):147–151. doi: 10.1016/0005-2728(86)90170-2. [DOI] [PubMed] [Google Scholar]
  3. Burg S. P., Burg E. A. Molecular requirements for the biological activity of ethylene. Plant Physiol. 1967 Jan;42(1):144–152. doi: 10.1104/pp.42.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giannopolitis C. N., Ries S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977 Feb;59(2):309–314. doi: 10.1104/pp.59.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kirk J. T., Allen R. L. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun. 1965 Dec 21;21(6):523–530. doi: 10.1016/0006-291x(65)90516-4. [DOI] [PubMed] [Google Scholar]
  6. Law M. Y., Charles S. A., Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J. 1983 Mar 15;210(3):899–903. doi: 10.1042/bj2100899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McCourt P., Kunst L., Browse J., Somerville C. R. The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol. 1987 Jun;84(2):353–360. doi: 10.1104/pp.84.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Somerville C. R., Ogren W. L. Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity. Biochem J. 1982 Feb 15;202(2):373–380. doi: 10.1042/bj2020373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Somerville C. R., Portis A. R., Ogren W. L. A Mutant of Arabidopsis thaliana Which Lacks Activation of RuBP Carboxylase In Vivo. Plant Physiol. 1982 Aug;70(2):381–387. doi: 10.1104/pp.70.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]
  11. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES