Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 May;87(1):286–290. doi: 10.1104/pp.87.1.286

Isolation of Amatoxin-Resistant Lines of Chlamydomonas reinhardtii1

Evidence for RNA Polymerase Mutants

David M Dusek 1, James F Preston III 1
PMCID: PMC1054741  PMID: 16666120

Abstract

The inhibitory activities of amatoxins on the growth of Chlamydomonas reinhardtii have been determined using a convenient assay based upon incubation in multiwell tissue culture plates followed by turbidimetric estimates of growth on a multiwell plate reader. Values for the inhibitory dosage at which growth is 50% of untreated culture (ID50) of 5.4, 6.6, and 5.6 micromolar were obtained for α-amanitin, O-methyl-α-amanitin, and amaninamide, respectively. Treatment of liquid cultures with 1 microgram per milliliter N-methyl-N′ -nitro-N-nitrosoguanidine followed by growth in agar pour tubes containing 25 micromolar α-amanitin led to the selection of several lines demonstrating varying resistance to amanitin inhibition, with ID50 values from 36 micromolar to greater than 200 micromolar. Two lines completely resistant to inhibition by 200 micromolar α-amanitin provided partially purified RNA polymerase activities that were 160-fold and 5600-fold more resistant to inhibition than the analogous enzyme activity from the wild-type strain. These studies provide evidence that Chlamydomonas reinhardtii does not contain significant activity capable of inactivating α-amanitin and that this amatoxin may be used to select for RNA polymerase mutants.

Full text

PDF
286

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggs J., Searles L. L., Greenleaf A. L. Structure of the eukaryotic transcription apparatus: features of the gene for the largest subunit of Drosophila RNA polymerase II. Cell. 1985 Sep;42(2):611–621. doi: 10.1016/0092-8674(85)90118-7. [DOI] [PubMed] [Google Scholar]
  2. Cochet-Meilhac M., Chambon P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim Biophys Acta. 1974 Jun 27;353(2):160–184. doi: 10.1016/0005-2787(74)90182-8. [DOI] [PubMed] [Google Scholar]
  3. Engelke D. R., Shastry B. S., Roeder R. G. Multiple forms of DNA-dependent RNA polymerases in Xenopus laevis. Rapid purification and structural and immunological properties. J Biol Chem. 1983 Feb 10;258(3):1921–1931. [PubMed] [Google Scholar]
  4. Greenleaf A. L., Weeks J. R., Voelker R. A., Ohnishi S., Dickson B. Genetic and biochemical characterization of mutants at an RNA polymerase II locus in D. melanogaster. Cell. 1980 Oct;21(3):785–792. doi: 10.1016/0092-8674(80)90441-9. [DOI] [PubMed] [Google Scholar]
  5. Hasnain S. E., Manavathu E. K., Leung W. C. DNA-mediated transformation of Chlamydomonas reinhardi cells: use of aminoglycoside 3'-phosphotransferase as a selectable marker. Mol Cell Biol. 1985 Dec;5(12):3647–3650. doi: 10.1128/mcb.5.12.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hodo H. G., 3rd, Blatti S. P. Purification using polyethylenimine precipitation and low molecular weight subunit analyses of calf thymus and wheat germ DNA-dependent RNA polymerase II. Biochemistry. 1977 May 31;16(11):2334–2343. doi: 10.1021/bi00630a005. [DOI] [PubMed] [Google Scholar]
  7. Jendrisak J. J., Burgess R. R. A new method for the large-scale purification of wheat germ DNA-dependent RNA polymerase II. Biochemistry. 1975 Oct 21;14(21):4639–4645. doi: 10.1021/bi00692a012. [DOI] [PubMed] [Google Scholar]
  8. Keller L. R., Schloss J. A., Silflow C. D., Rosenbaum J. L. Transcription of alpha- and beta-tubulin genes in vitro in isolated Chlamydomonas reinhardi nuclei. J Cell Biol. 1984 Mar;98(3):1138–1143. doi: 10.1083/jcb.98.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Little M. C., Preston J. F., 3rd, Bonetti S. Improved synthesis and purification of methylated amanitins using diazomethane. Int J Pept Protein Res. 1986 Sep;28(3):282–288. doi: 10.1111/j.1399-3011.1986.tb03257.x. [DOI] [PubMed] [Google Scholar]
  10. Little M. C., Preston J. F. Sensitivity of Carrot Cell Cultures and RNA Polymerase II to Amatoxins : Evidence for the Inactivation of 6'-Hydroxyamatoxins. Plant Physiol. 1985 Feb;77(2):443–449. doi: 10.1104/pp.77.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Preston J. F., Stark H. J., Kimbrough J. W. Quantitation of amanitins in Amanita verna with calf thymus RNA polymerase B. Lloydia. 1975 Mar-Apr;38(2):153–161. [PubMed] [Google Scholar]
  12. Redinbaugh M. G., Turley R. B. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Anal Biochem. 1986 Mar;153(2):267–271. doi: 10.1016/0003-2697(86)90091-6. [DOI] [PubMed] [Google Scholar]
  13. Sanford T., Golomb M., Riddle D. L. RNA polymerase II from wild type and alpha-amanitin-resistant strains of Caenorhabditis elegans. J Biol Chem. 1983 Nov 10;258(21):12804–12809. [PubMed] [Google Scholar]
  14. Sentenac A. Eukaryotic RNA polymerases. CRC Crit Rev Biochem. 1985;18(1):31–90. doi: 10.3109/10409238509082539. [DOI] [PubMed] [Google Scholar]
  15. Sklar V. E., Jaehning J. A., Gage L. P., Roeder R. G. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase III from the posterior silk gland of Bombyx mori. J Biol Chem. 1976 Jun 25;251(12):3794–3800. [PubMed] [Google Scholar]
  16. Somers D. G., Pearson M. L., Ingles C. J. Isolation and characterization of an alpha-amanitin-resistant rat myoblast mutant cell line possessing alpha-amanitin-resistant RNA polymerase II. J Biol Chem. 1975 Jul 10;250(13):4825–4831. [PubMed] [Google Scholar]
  17. Wieland T. The toxic peptides from Amanita mushrooms. Int J Pept Protein Res. 1983 Sep;22(3):257–276. doi: 10.1111/j.1399-3011.1983.tb02093.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES