Abstract
Characterization of the functional organization of the photochemical apparatus in the light sensitive chlorophyll b-deficient oil yellow-yellow green (OY-YG) mutant of maize (Zea mays) is presented. Spectrophotometric and kinetic analysis revealed substantially lower amounts of the light harvesting complex of photosystem II (LHCII-peripheral) in high light-grown OY-YG thylakoids. However, accumulation of a tightly bound LHCII appears unaffected by the lesion. Changes in photosystem (PS) stoichiometry include lower amounts of PSII with characteristic fast kinetics (PSIIα) and a substantial accumulation of PSII centers with characteristic slow kinetics (PSIIβ) in the thylakoid membrane of the OY-YG mutant. Thus, PSIIβ is the dominant photosystem in the mutant chloroplasts. In contrast to wild type, roughly 80% of the mutant PSIIβ centers are functionally coupled to the plastoquinone pool and are probably localized in the appressed regions of the thylakoid membrane. These centers, designated PSIIβ-QB-reducing (QB being the secondary electron quinone acceptor of PSII), are clearly distinct from the typical PSIIβ-QB-nonreducing centers found in the stroma lamellae of wild-type chloroplasts. It is concluded that the observed changes in the stoichiometry of electron-transport complexes reflect the existence of a regulatory mechanism for the adjustment of photosystem stoichiometry in chloroplasts designed to correct any imbalance in light absorption by the two photosystems.
Full text
PDF![365](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/6079d15aaad6/plntphys00628-0083.png)
![366](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/4615f59eb963/plntphys00628-0084.png)
![367](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/fd4e9f313916/plntphys00628-0085.png)
![368](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/a2f305746796/plntphys00628-0086.png)
![369](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/6fac4c7ce6ad/plntphys00628-0087.png)
![370](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/1054758/6369bff4ec42/plntphys00628-0088.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abadia J., Glick R. E., Taylor S. E., Terry N., Melis A. Photochemical Apparatus Organization in the Chloroplasts of Two Beta vulgaris Genotypes. Plant Physiol. 1985 Nov;79(3):872–878. doi: 10.1104/pp.79.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson J. M., Melis A. Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci U S A. 1983 Feb;80(3):745–749. doi: 10.1073/pnas.80.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunsmuir P. The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nucleic Acids Res. 1985 Apr 11;13(7):2503–2518. doi: 10.1093/nar/13.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghirardi M. L., Melis A. Localization of photosynthetic electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays. Arch Biochem Biophys. 1983 Jul 1;224(1):19–28. doi: 10.1016/0003-9861(83)90186-8. [DOI] [PubMed] [Google Scholar]
- Melis A., Brown J. S. Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4712–4716. doi: 10.1073/pnas.77.8.4712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melis A., Homann P. H. A selective effect of Mg2+ on the photochemistry at one type of reaction center in photosystem II of chloroplasts. Arch Biochem Biophys. 1978 Oct;190(2):523–530. doi: 10.1016/0003-9861(78)90306-5. [DOI] [PubMed] [Google Scholar]
- Melis A., Schreiber U. The kinetic relationship between the C-550 absorbance change, the reduction of Q(delta A320) and the variable fluorescence yield change in chloroplasts at room temperature. Biochim Biophys Acta. 1979 Jul 10;547(1):47–57. doi: 10.1016/0005-2728(79)90094-x. [DOI] [PubMed] [Google Scholar]
- Melis A., Thielen A. P. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum. Biochim Biophys Acta. 1980 Feb 8;589(2):275–286. doi: 10.1016/0005-2728(80)90044-4. [DOI] [PubMed] [Google Scholar]
- Pulles M. P., Van Gorkom H. J., Verschoor G. A. Primary reactions of photosystem II at low pH. 2. Light-induced changes of absorbance and electron spin resonance in spinach chloroplasts. Biochim Biophys Acta. 1976 Jul 9;440(1):98–106. doi: 10.1016/0005-2728(76)90116-x. [DOI] [PubMed] [Google Scholar]
- Staehelin L. A., Arntzen C. J. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol. 1983 Nov;97(5 Pt 1):1327–1337. doi: 10.1083/jcb.97.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]