Abstract
The photorespiratory mutant of Nicotiana sylvestris, NS 349, lacking serine:glyoxylate aminotransferase (SGAT) grows in 1% CO2 but not in normal air (NA McHale, EA Havir, I Zelitch 1988 Theor Appl Genet. In press). Alanine:hydroxypyruvate and asparagine:hydroxypyruvate aminotransferase activities were also lacking in the mutant, and plants heterozygous with respect to SGAT which grow in normal air had 50% of the activities present in homozygous plants. Therefore, all these activities are associated with the same enzyme. On feeding [2-14C]glycolate to leaf discs in the light, NS 349 showed reduced incorporation of radioactivity into the neutral and organic acid fractions and increased incorporation into the amino acid fraction, principally into serine. The effect of reducing SGAT by 50% in heterozygous plants produced little change in the metabolism of [2-14C]glycolate, showing there is a large excess of this enzyme in wild-type plants.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carpe A. I., Smith I. K. Serine-glyoxylate aminotransferase from kidney bean (Phaseolus vulgaris). II. The reverse reactions. Biochim Biophys Acta. 1974 Nov 25;370(1):96–101. doi: 10.1016/0005-2744(74)90035-7. [DOI] [PubMed] [Google Scholar]
- Havir E. A. Evidence for the presence in tobacco leaves of multiple enzymes for the oxidation of glycolate and glyoxylate. Plant Physiol. 1983 Apr;71(4):874–878. doi: 10.1104/pp.71.4.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Havir E. A. Inactivation of serine:glyoxylate and glutamate:glyoxylate aminotransferases from tobacco leaves by glyoxylate in the presence of ammonium ion. Plant Physiol. 1986 Feb;80(2):473–478. doi: 10.1104/pp.80.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Havir E. A. Oxalate metabolism by tobacco leaf discs. Plant Physiol. 1984 Jun;75(2):505–507. doi: 10.1104/pp.75.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hondred D., Hunter J. M., Keith R., Titus D. E., Becker W. M. Isolation of serine:glyoxylate aminotransferase from cucumber cotyledons. Plant Physiol. 1985 Sep;79(1):95–102. doi: 10.1104/pp.79.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ireland R. J., Joy K. W. Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch Biochem Biophys. 1983 May;223(1):291–296. doi: 10.1016/0003-9861(83)90594-5. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Fujiwara S. Identification of mammalian aminotransferases utilizing glyoxylate or pyruvate as amino acceptor. Peroxisomal and mitochondrial asparagine aminotransferase. J Biol Chem. 1988 Jan 5;263(1):182–186. [PubMed] [Google Scholar]
- Noguchi T., Hayashi S. Peroxisomal localization and properties of tryptophan aminotransferase in plant leaves. J Biol Chem. 1980 Mar 25;255(6):2267–2269. [PubMed] [Google Scholar]
- Redgwell R. J. Fractionation of plant extracts using ion-exchange Sephadex. Anal Biochem. 1980 Sep 1;107(1):44–50. doi: 10.1016/0003-2697(80)90489-3. [DOI] [PubMed] [Google Scholar]
- Rehfeld D. W., Tolbert N. E. Aminotransferases in peroxisomes from spinach leaves. J Biol Chem. 1972 Aug 10;247(15):4803–4811. [PubMed] [Google Scholar]
- Smith I. K. Purification and characterization of serine:glyoxylate aminotransferase from kidney bean (Phaseolus vulgaris). Biochim Biophys Acta. 1973 Sep 15;321(1):156–164. doi: 10.1016/0005-2744(73)90069-7. [DOI] [PubMed] [Google Scholar]
- Somerville C. R., Ogren W. L. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci U S A. 1980 May;77(5):2684–2687. doi: 10.1073/pnas.77.5.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]