Skip to main content
Biodiversity Data Journal logoLink to Biodiversity Data Journal
. 2023 Sep 14;11:e102057. doi: 10.3897/BDJ.11.e102057

Terrestrial nematodes from the Maritime Antarctic

Milka Elshishka 1,, Aleksandar Mladenov 1, Stela Lazarova 1, Vlada Peneva 1
PMCID: PMC10552655  PMID: 37809281

Abstract

Background

Soil nematodes are one of the most important terrestrial faunal groups in Antarctica, as they are a major component of soil micro-food webs. Despite their crucial role in soil processes, knowledge of their species diversity and distribution is still incomplete. Taxonomic studies of Antarctic nematodes are fragmented, which prevents assessment of the degree of endemicity and distribution of the species, as well as other aspects of biogeography.

New information

The present study is focused on the nematode fauna of one of the three Antarctic sub-regions, the Maritime Antarctic and summarises all findings published up to April 2023. A species list that includes 44 species, belonging to 21 genera, 16 families and eight orders is provided. A review of the literature on terrestrial nematodes inhabiting the Maritime Antarctic showed that the sites are unevenly studied. Three islands (Signy, King George and Livingston Islands) revealed highest species richness, probably due to the highest rates of research effort. Most species and four genera (Antarctenchus, Pararhyssocolpus, Amblydorylaimus and Enchodeloides) are endemic, proving that nematode fauna of the Maritime Antarctic is autochthonous and unique. Several groups of islands/sites have been revealed, based on their nematode fauna. The study showed that species with a limited distribution prevailed, while only two species (Plectusantarcticus and Coomansusgerlachei) have been found in more than 50% of the sites. Based on the literature data, details on species localities, microhabitat distribution, plant associations and availability of DNA sequences are provided.

Keywords: endemics, distribution, DNA sequences, species

Introduction

Soil nematodes are one of the most important groups of the terrestrial fauna in Antarctica (Maslen and Convey 2006) as they are abundant, taxonomically and functionally diverse and occupy a central position in the soil micro-food webs (Adams et al. 2014) and may have an impact on nutrient cycling and carbon dioxide emission, when soils thaw for a longer period of the year under climate change (van den Hoogen et al. 2019). In the challenging environmental conditions of the Antarctic, their distribution is limited to ice-free areas, where they have evolved throughout millions of years of climatic fluctuations in refugia (Ebach et al. 2008, Convey et al. 2020, Stevens and Mackintosh 2023). The glaciations, long-term isolation, harsh climate and the patchy distribution of ice-free areas (present today where at least partially ice-free throughout repeated glacial maxima (Newman et al. 2009)) are the main factors affecting the Antarctic nematode fauna origin/genesis (i.e. the formation of fauna under the influence of multiple factors - historical, geographic and ecological) (Andrássy 1998, Convey and Peck 2019). In order to survive in the extreme environments, nematodes have developed exceptional cryptobiotic adaptations to manage freezing and desiccation stress (e.g. Pickup (1988), Wharton (1995), Treonis and Wall (2005), Kagoshima et al. (2019)).

Knowledge of the impact of climate change on nematode communities from extreme habitats and how they respond to these changes is insufficient (Freckman and Virginia 1997, Nielsen et al. 2011a). One of the main problems in predicting the effects of climate change in Antarctica is the limited knowledge on the diversity of terrestrial fauna, especially nematodes and the lack of comprehensive long-term studies (Gantait 2014). Data on species distribution and biogeography are not enough and the taxonomic information still remains confused or scarce (Andrássy 1998, Maslen and Convey 2006, Adams et al. 2014, Kagoshima et al. 2019). Nematodes possess high indicator potential for assessing various environmental changes in the soil environment because they are abundant, ubiquitous, utilise diverse trophic and live strategies and, thus, occupy key positions in soil micro-food webs (Neher 2001, Ferris et al. 2001, Neher 2010, Chauvin et al. 2020, Taylor et al. 2020, Ara Khanum et al. 2022, Du Preez et al. 2022). This highlights the need for research on the fauna of nematodes and their communities in extreme environments in view of the already occurring global change.

Antarctica represents three distinct climatic regions: the Sub-Antarctic, Maritime and Continental Antarctic (Holdgate 1977), with the Sub-Antarctic being the most favourable (mean air temperatures of most islands are low, but positive during the whole year), with the Continental Antarctic having the harshest conditions (the average monthly temperatures remain below freezing) (Convey 2017). The Continental Antarctic covers the territories of the continent, the Balleny Islands and the eastern side of the Antarctic Peninsula (Convey 2017). The Sub-Antarctic is the boundary zone that lies north of 56°S (Chown and Brooks 2019). The flora and fauna in this region are rather typical of temperate latitudes. In this paper, we focused on terrestrial nematodes from the Maritime Antarctic. This is a region with a strong influence of the Southern Ocean; it includes the western coast of the Antarctic Peninsula to ca. 72°S, the South Shetland, South Orkney and South Sandwich Islands and the isolated Bouvetøya and Peter I Øya (Convey 2006, Convey 2017). The Maritime Antarctic is characterised by more favourable conditions compared with the Continental Antarctic: mean air temperatures are positive for 1–4 months of the year (Convey 2017), the vegetation is predominantly cryptogamic (algae, mosses, liverworts, lichens); higher plants are represented by two species, Deschampsiaantarctica Desv. (Poaceae) and Colobanthusquitensis Bartl. (Caryophyllaceae) (Greene 1970, Longton 1979, Smith 1984).

Studies on nematodes in the Maritime Antarctic started at the beginning of the 20th century, with the contribution of the Romanian biologist Emil Racoviţă during the first scientific Antarctic expedition in winter (Andrássy 1998). This resulted in a description of the first Antarctic nematode species, Mononchusgerlachei (= Coomansusgerlachei (de Man 1904) Jairajpuri and Khan 1977), followed by three other species, Plectusantarcticus de Man 1904, P.belgicae de Man 1904 and Dorylaimus sp. Following these first data, targeted investigations on the terrestrial nematode fauna from this part of Antarctica started from the early 70s of the 20th century (Spaull 1972, Spaull 1973a, Spaull 1973b, Spaull 1973c, Loof 1975, Maslen 1979a, Maslen 1979b, Caldwell 1981, Maslen 1981, Spaull 1981, Pickup 1988, Shishida and Ohyama 1989, Tsalolikhin 1989, Pickup 1990, Janiec 1996, Peneva et al. 1996, Andrássy 1998, Peneva and Chipev 1999, Convey et al. 2000, Nedelchev and Peneva 2000, Peneva et al. 2002, Convey and Wynn-Williams 2002, Holovachov and Bostrom 2006, Maslen and Convey 2006, Nedelchev and Peneva 2007, Kito 2009, Peneva et al. 2009, Nielsen et al. 2011b, Velasco-Castrillón and Stevens 2014, Velasco-Castrillón et al. 2014a, Russell et al. 2014, Elshishka et al. 2015a, Elshishka et al. 2015b, Elshishka et al. 2017, Kagoshima et al. 2019, Newsham et al. 2020). Antarctic nematodes have been studied mainly in easy to access areas near to the research bases/stations; therefore, there are still many remote locations never sampled for nematodes which raise questions on how widespread the species are (Adams et al. 2014, Convey et al. 2020).

According to Andrássy (1998), numerous studies have reported species as new records with no morphological description making it impossible to confirm identifications, especially when the collected material is no longer available for subsequent examination. Further, this has an impact on the potential to assess fauna endemicity, which is critical for examining Antarctic biogeography within a global context (Andrássy 1998). There are numerous cases of misclassification and underestimation of the diversity for most microfaunal groups in Antarctica, likely due to poor taxonomic resolution caused by insufficient sampling and their difficult identification (Adams et al. 2006, Iakovenko et al. 2015, Carapelli et al. 2017, Short et al. 2022, Collins et al. 2023), as well as the low degree of the development and application of molecular taxonomy.

In recent years, molecular studies have become more important in these marginal habitats, as a powerful toolkit to complement the traditional taxonomy, species identification and descriptions and to assess biodiversity and biogeography (Courtright et al. 2000, Velasco-Castrillón et al. 2014b, Elshishka et al. 2015b, Elshishka et al. 2017, Czechowski et al. 2017, Velasco-Castrillón et al. 2018, Kagoshima et al. 2019).

The integrative approach (combining morphological and molecular data) is an effective way to understand the scale of endemism, evolution and distribution of the Antarctic nematode fauna. However, the main problem of not linking molecular data with morphology still remains for the vast majority of Antarctic nematode species.

The present paper aims to summarise all records of nematode species occurrence in the Maritime Antarctic between the years of 1904 and April 2023 as a basis for further studies and to present a snapshot of nematode species diversity in this part of the Antarctic.

Materials and methods

The nematode species list has been composed, based on literature data and refers to the Maritime Antarctic. This list includes all species recovered in the Maritime Antarctic, as well as the islands and sites from where each species was reported, along with data on microhabitats and plant associations, accession numbers of published sequences in GenBank also included, if available. The type of microhabitat is reported as in the original paper, the scientific names of the plants being adapted according to the current systematics (Ochyra 1998). Geographical coordinates are presented additionally for each site if missing in the original paper. For the literature search, online bibliography search engine Google Scholar and the academic databases Scopus, Web of Science and CABI were used with search keywords “terrestrial nematode species*” and “Maritime Antarctic*”. We focused on studies reporting nematode species (see Holovachov (2014a)) from the Maritime Antarctic and omitted those that provide data only at the generic or family level.

Several papers recording multiple unidentified taxa at generic level (Maslen and Convey 2006, Nielsen et al. 2011b) probably contain many undescribed nematode species from those regions suggesting that the nematode diversity there might be underestimated to a great extent. Overall, nematodes from 37 sites (34 islands and three localities on the Antarctic Peninsula) are included in the review. The taxonomic position of the Antarctic species was presented according to the current nematode nomenclature. Classification follows Andrássy (2005), Andrássy (2007) and Andrássy (2009); only for order Plectida classification follows Holovachov (2014b). The analyses are based on species presence/absence data and Wizard > Matrix display function in PRIMER v.7.0 software (Clarke and Gorley 2015). The Matrix display wizard performs a sequence of sample and species resemblance calculations and clustering and seriation steps resulting in a shade plot which visualises the species presence/absence data and sites similarity.

Checklists

Checklist of terrestrial nematodes from the Maritime Antarctic

Dorylaimida

DB2E6DDD-5A83-5FAD-AA05-491530706589

Nordiidae

02036AD4-B115-5ACB-9D3A-C365D4FFFBE3

Enchodeloides signyensis

(Loof, 1975) Elshishka, Lazarova, Radoslavov, Hristov, Peneva, 2017

F37166B3-37C5-55AA-A12F-64A130AA896F

  • Enchodelus signyensis Loof, 1975

Qudsianematidae

15105F37-9676-56CF-887B-328D15B98C4B

Eudorylaimus coniceps

Loof, 1975

181A5CE6-3861-500E-A087-F0FF38D50423

Eudorylaimus pseudocarteri

Loof, 1975

47CAF4A1-E28A-5E59-ACEB-31BCAA37A957

Eudorylaimus spaulli

Loof, 1975

5F4D2E55-53D8-538D-B503-A78CEEA105CE

Eudorylaimus verrucosus

Loof, 1975

3FB9DFB0-EEBC-545E-9436-944D9DBBEED3

Eudorylaimus cf. carteri

Andrassy, 1959 (Bastian, 1865)

13B2261E-A584-5999-BED0-190056CB4892

Pararhyssocolpidae

6C015E2C-BEF0-56CA-AF5D-8AE0D3404203

Pararhyssocolpus paradoxus

(Loof, 1975) Elshishka, Lazarova, Radoslavov, Hristov, Peneva, 2015

D9585A55-9B26-58B4-9516-DDC1BC9EB469

  • Eudorylaimus paradoxus Loof, 1975|Rhyssocolpus paradoxus (Loof, 1975) Andrássy, 1986

Dorylaimidae

671787FE-3946-5420-9619-FACA9D2FA213

Calcaridorylaimus signatus

(Loof, 1975) Andrássy, 1981

F5A9037F-584C-56F6-A44A-63714ACBC6D2

  • Mesodorylaimus signatus Loof, 1975

Mesodorylaimus antarcticus

Nedelchev and Peneva, 2000

EE444A29-4179-5887-B2A1-F41ADCCD81D6

Mesodorylaimus chipevi

Nedelchev and Peneva, 2000

9CD6CDD3-2EF8-5BAE-9D2A-2BCBC01ADE36

Mesodorylaimus imperator

Loof, 1975

9515D5C8-859D-5A66-A87E-9B42936469F3

Mesodorylaimus masleni

Nedelchev and Peneva, 2000

2A2130FE-3C7C-5B1D-9ADE-2B200FCE8D50

Aporcelaimidae

75CC4343-89B8-5900-94FC-936112411653

Amblydorylaimus isokaryon

(Loof, 1975) Andrássy, 1998

B044B3FC-B769-5B49-BA3E-B9BC91BE6581

  • Eudorylaimus isokaryon Loof, 1975

Aphelenchida

28744625-5C08-5291-98C0-3794406ED313

Aphelenchoididae

01714A28-F5E0-5D6B-B774-10899E47322D

Aphelenchoides haguei

Maslen, 1979

D4AC79D2-B450-5D13-9DCB-9E7FA2223288

Aphelenchoides vaughani

Maslen, 1979

A1301FE0-4F0B-5836-89C5-9246F2546124

Laimaphelenchus helicosoma

(Maslen, 1979) Peneva and Chipev, 1999

EFACFF62-976B-52D8-9526-5BA5A58C10E2

  • Aphelenchoides helicosoma Maslen, 1979

Alaimida

ADEC0201-921A-524A-B652-7B828938C15C

Amphidelidae

CBF633E8-7E83-5A54-A021-9C64861B55ED

Paramphidelus antarcticus

Tsalolikhin, 1989

D52EDC6A-5219-5C6E-A1F5-5F16A09027F6

Monhysterida

6748B1A9-7801-5159-8BB2-F159B2314D3E

Monhysteridae

7F94800F-CCCC-5B15-A41F-FBDDAE8C6CF3

Eumonhystera filiformis

(Bastian, 1865) Andrássy, 1981

87224B84-E25A-58B9-8B24-D9603402ED4E

Eumonhystera vulgaris

(de Man, 1880) Andrássy, 1981

33E17069-31EC-5865-A580-6DC42A82B918

Geomonhystera villosa

(Bütschli, 1873) Andrássy, 1981

6766505C-8E58-5AA4-BA98-A18390B2F1C0

Plectida

195B637E-A81D-5EC0-9837-4C8317666230

Plectidae

02148983-E217-5C83-8D3D-B5BA9EBF4DCD

Plectus antarcticus

de Man, 1904

E558E15A-D114-5D9C-BA37-37BC230AD109

Plectus cf. antarcticus

de Man, 1904

DF1FF3FE-15D0-5BDB-AFEC-B84A616E61AB

Plectus belgicae

de Man, 1904

49B0CF61-2DA8-5A0A-976F-96025CF7414C

Plectus cf. belgicae

de Man, 1904

A7BC5E1E-478B-5A29-8CE2-A308A5ABA7F0

Plectus insolens

Andrássy, 1998

ECAB5F55-AB36-5933-9BB3-4876420207EA

Plectus tolerans

Andrássy, 1998

06295DAB-BBB3-5019-A2F7-0C9B80497144

Plectus cf. tolerans

Andrássy, 1998

A9D39BED-6A38-5246-BBC1-7E7217EAE2F3

Plectus meridianus

Andrássy, 1998

BC659854-2A25-5484-9336-20F9490DBAC9

Plectus cf. meridianus

Andrássy, 1998

976487C9-C3EB-5CF8-B924-F0D5E86B7FB4

Plectus armatus

Bütschli, 1873

E97AA054-492C-5A21-B20B-198B5E58EB7B

  • Ceratoplectus armatus (Bütschli, 1873) Andrássy, 1984

Tylenchida

266FDC27-9624-596A-AD7A-24842C567356

Psilenchidae

A315F1BF-3304-582D-BB2C-CC87EF8EFC52

Antarctenchus hooperi

Spaull, 1972

8412463F-2F6C-5DB8-AF9A-7E4457E73FC2

Anguinidae

8DA64EBF-3D67-5C57-A8D9-9D104D5B8277

Ditylenchus parcevivens

Andrássy, 1998

E2215FCD-DAF8-5AB4-819E-30C2BA885C08

Rhabditida

51F7A518-984C-5256-93F6-F883548EFB18

Teratocephalidae

CDEA95B0-7F13-5883-9856-2C609C4E06F1

Teratocephalus tilbrooki

Maslen, 1979

3B584363-B128-5856-A2DB-DC6BDB952CA7

Teratocephalus pseudolirellus

Maslen, 1979

0BEC9F2C-E0DD-54EF-A34F-27716F289B59

Teratocephalus rugosus

Maslen, 1979

AD7D6030-A3BD-5870-A253-9F5E9C120EA1

Cephalobidae

82D975B4-05C7-5984-AD81-AAFC584A518B

Acrobeloides arctowskii

Holovachov and Boström, 2006

7C694E1F-086F-590F-9BBB-EF082420FBE7

Cervidellus cf. vexilliger

(de Man, 1880) Thorne, 1937

DE9D79DC-B582-5B55-B83A-1485B5BF627C

Rhabditidae

58F28B03-4A75-5365-B10C-05773A48BEB6

Cuticularia firmata

Andrássy, 1998

107613C0-FDBC-560E-9D60-60066C61F32B

Rhabditis krylovi

Tsalolikhin, 1989

D26C2B68-3D22-5133-A37C-DB9F260A2761

Rhabditis marina -group

410838AE-0F98-5B3C-AE3E-0CCB5F4D407A

Peloderidae

8C42EF21-19F7-5F43-A2E3-1A7D323A102B

Pelodera teres -group

F43B566C-DE04-54B9-881E-D65B10FA9A59

Pelodera strongyloides -group

C5A2BEFB-7A41-50C1-9050-C7E4AC3EA8F9

Pelodera parateres -group

D1D7791E-0B8D-5994-A75E-6FF0B8A08B8F

Mononchida

417FEFF6-89BD-5372-82DA-295F4AF64FC8

Mononchidae

CCA60FEF-1D5F-5DB5-A53E-25427B4590F4

Coomansus gerlachei

(de Man, 1904) Jairajpuri and Khan, 1977

4DDB6E9C-AEB1-54D8-95B5-28D16F93D36D

  • Mononchus gerlachei de Man, 1904|Clarkusgerlachei (de Man, 1904) Jairajpuri, 1970

Analysis

Results

To date, 44 species of terrestrial nematodes, belonging to 21 genera, 16 families and eight orders have been recorded in the Maritime Antarctic (Table 1, Fig. 1). Nematodes have been reported from 34 islands and three sites on the Antarctic Peninsula (Fig. 2). Several groups of islands/sites have been revealed, based on their nematode fauna. Those groups form a gradient from north (the group of Livingston, King George and Signy Islands) to south (the group of Adelaide, Charcot, Alexander, Leonie and Alamode Islands).

Table 1.

Distribution of terrestrial nematodes in the Maritime Antarctic.

* Taxonomic paper; ** Paper with molecular data; ***Paper with molecular and morphologica data

Terrestrial reference sites (SIRS) at Signy Island for long-term monitoring of the various biotic and abiotic components of Antarctic moss-peat communities (for full descriptions, see Tilbrook (1973)). These sites no longer exist and no studies have been done since the late 1980s.

SIRS 1 (Polytrichastrumalpinum (Hedwig), Chorisodontiumaciphyllum (Hook. f. & Wilson) Broth. (60°43.5'S, 45°35.6'W))

SIRS 2 (Sanioniauncinata (Hedw.), Warnstorfiasarmentosa (Wahlenb.), Warnstorfialaculosa (Müll. Hal.), Cephaloziellavarians (Gottsche) Steph. (60°43.7'S, 45°36'W))

1 Geographical coordinates according to original paper. 2 Geographical coordinates additionally added.

Nematode species Locality / Coordinates Microhabitat and plant species DNA / Accesion number in GenBank Reference
Enchodeloides
signyensis
Signy Island (type locality)
1,260°43’S, 45°38’W
Syntrichiafilaris (Müll. Hal.) (type
habitat);
D.antarctica;
C.quitensis
Loof (1975)
*
Maslen (1979b)
SIRS 1;
SIRS 2
Caldwell (1981)
SIRS 1;
SIRS 2
Maslen (1981)
Alamode Island
1,268°43'S, 67°32'W
S.uncinata Loof (1975)*
Maslen (1979b)
Moss Maslen and Convey (2006)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat Maslen and Convey (2006)
Alexander Island171°52’40’’S, 68°15’57’’W Convey and Wynn-Williams (2002)
Blaiklock Island
1,267°33’S, 67°00’W
P.alpinum, Pohlianutans (Hedw.) Loof (1975) *
Maslen (1979b)
Coronation Island
1,260°38’S, 45°35’W
D.antarctica Loof (1975)*
Maslen (1979b)
Charcot Island
1,269°45'S, 75°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Moss, lichen, soil Maslen and Convey (2006)
Dream Island
264°44′0″S, 64°14′0″W
Moss mats with green algae Shishida and Ohyama (1989)*
Elephant Island
1,261°10’S, 55°14’W
D.antarctica;
Polytrichum sp.
Loof (1975)*
Maslen (1979b)
Galindez Island
1,265°15'S, 64°15'W
D.antarctica Loof (1975)*
Maslen (1979b)
King George Island
162°09‘32“S, 58°27‘58“W
D.antarctica, C.quitensis, Sanionia sp., S.filaris, Syntrichiamagellanica (Mont.) Russell et al. (2014)
King George Island
262°2′S, 58°21′W
Moist brown soil without vegetation, surrounded by moss 18S rDNA
KY881720.1
28S rDNA
KY881719.1
Elshishka et al. (2017)***
Livingston Island
262°36′S, 60°30′W
D.antarctica;
D.antarctica+S.uncinata;
D.antarctica+S.uncinata+C.quitensis;
P.alpinum;
S.uncinata;
Bryum sp.;
Usnea sp.+P.alpinum;
Cladonia sp.+S.uncinata+P.alpinum;
Polytrichumjuniperinum Hedw.+S.uncinata;
S.uncinata+Bartramiapatens Brid.
Peneva et al. (2002)*
Elshishka et al. (2015a)
Moss;
Soil under moss crust;
Soil
Elshishka et al. (2017)*
Eudorylaimusconiceps Signy Island
(type locality)
1,260°43’S, 45°38’W
S.filaris (type habitat);
Andreaeagainii Card.;
C.quitensis;
W.laculosa and W.sarmentosa
Loof (1975)*
SIRS 1 Maslen (1979b)
SIRS 2 Maslen (1981)
Andreaea sp. Pickup (1988)
Wharton and Block (1993)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial
mat
Maslen and Convey (2006)
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Charcot Island
1,269°45'S, 75°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Moss, lichen, soil Maslen and Convey (2006)
Coronation Island
1,260°38’S, 45°35’W
D.antarctica Loof (1975)*
Maslen (1979b)
Elephant Island
1,261°10’S, 55°14’W
D.antarctica Loof (1975)*
Maslen (1979b)
Emperor Island
1,267°52'S, 68°43'W
S.uncinata and Bryumpseudotriquetrum (Hedw.) Loof (1975)*
Maslen (1979b)
Guebriant Island
267°48′S, 68°25′W
Maslen (1979b)
Halfmoon Island
162°35‘45“S, 59°54‘06“W
Russell et al. (2014)
King George Island
262°2′S, 58°21′W
Mosses Kito (2009)
King George Island
162°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Leonie Island
267°36′S, 68°21′W
Mixture of soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457670.1
LC457669.1
LC457668.1
LC457667.1
LC457666.1
LC457665.1
LC457664.1
LC457663.1
LC457662.1
LC457647.1
LC457646.1
LC457645.1
Kagoshima et al. (2019)**
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
E.pseudocarteri Signy Island (type locality)
160°43’S, 45°38’W
A.gainii (type habitat);
W.laculosa and W.sarmentosa;
D.antarctica
Loof (1975)*
Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
Andreaea sp. Pickup (1988)
Wharton and Block (1993)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen Maslen and Convey (2006)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat, freshwater
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Charcot Island
1,269°45'S, 75°15'W
Moss, lichen, soil Maslen and Convey (2006)
Coronation Island
1,260°38’S, 45°35’W
D.antarctica Loof (1975)*
Maslen (1979b)
Elephant Island
1,261°10’S, 55°14’W
Polytrichum sp. Loof (1975)*
Maslen (1979b)
King George Island
262°2′S, 58°21′W
Puddle Tsalolikhin (1989)*
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W
Russell et al. (2014)
Livingston Island
162°39‘14“S, 60°36‘39“W
E.spaulli Alamode Island
(type locality)
1,268°43'S, 67°32'W
Soil around S.uncinata (type habitat) Loof (1975)*
Moss, lichen, soil, microbial mat Maslen and Convey (2006)
Maslen (1979b)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen Maslen and Convey (2006)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial
mat
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Blaiklock Island
1,267°33’S, 67°00’W
P.alpinum, Pohlianutans Loof (1975)*
Maslen (1979b)
Charcot Island
1,269°45'S, 075°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Moss, lichen, soil Maslen and Convey (2006)
Coronation Island
1,260°38'S, 45°35'W
D.antarctica Loof (1975)*
Maslen (1979b)
Deception Island
262°58′37″S, 60°39′0″W
Maslen (1979b)
Elephant Island
1,261°10’S, 55°14’W
D.antarctica;
Polytrichum sp.
Loof (1975)*
Maslen (1979b)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Limpet Island
1,267°38'S, 68°19'W
S.uncinata Loof (1975)*
Maslen (1979b)
Pourquoi pas Island
267°41S, 67°28′W
Maslen (1979b)
Signy Island
1,260°43’S, 45°38’W
S.filaris
B . pseudotriquetrum;
D.antarctica;
W.laculosa and W.sarmentosa
Loof (1975)*
Wharton and Block (1993)
Andreaea sp. Pickup (1988)
Maslen (1979b)
SIRS 2 Maslen (1981)
E.verrucosus Elephant Island
(type locality)
1,261°10’S, 55°14’W
D.antarctica (type habitat) Loof (1975)*
Maslen (1979b)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen, soil, microbial
mat
Maslen and Convey (2006)
Signy Island
160°43’S, 45°38’W
Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
Wharton and Block (1993)
Eudorylaimuscf.carteri Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Pararhyssocolpusparadoxus Signy Island (type locality)
160°43’S, 45°38’W
A.gainii (type habitat);
S.filaris
Loof (1975)*
Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen, soil, microbial
mat
Maslen and Convey (2006)
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S. uncinata Newsham et al. (2020)
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Blaiklock Island
1,267°33’S, 67°00’W
Maslen (1979b)
Coronation Island
1,260°38'S, 45°35'W
D.antarctica Loof (1975)*
Maslen (1979b)
Elephant Island
1,261°10’S, 55°14’W
S.uncinata Loof (1975)*
Maslen (1979b)
Galindez Island
1, 265°15'S, 64°15'W
D.antarctica Loof (1975)*
Maslen (1979b)
Guebriant Island
267°48′S, 68°25′W
Maslen (1979b)
Intercurrence Island
1,263°55'S, 61°24'W
Brachythecium sp. Loof (1975)*
Maslen (1979b)
King George Island
262°2′S, 58°21′W
Kito (2009)
Soil 18S rDNA
KM092521.1
28S rDNA
KM092522.1
Elshishka et al. (2015b)***
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Limpet Island
1,267°38'S, 68°19'W
S.uncinata Loof (1975)*
Maslen (1979b)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Sanionia sp.;
C.quitensis, D.antarctica, moss;
D.antarctica, C.quitensis;
D.antarctica, moss
Elshishka et al. (2015b)*
Nelson Island
262°18′S, 59°3'W
Moss Elshishka et al. (2015b)*
Calcaridorylaimussignatus Signy Island (type locality)
160°43’S, 45°38’W
S.filaris (type habitat);
B.pseudotriquetrum;
C.quitensis;
D.antarctica;
Prasiolacrispa (Lightfoot)
Loof (1975)*
Maslen (1979b)
SIRS1 Caldwell (1981)
SIRS 1;
SIRS 2
Maslen (1981)
Soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457654.1
LC457653.1
LC457652.1
LC457651.1
LC457650.1
LC457649.1
LC457648.1
Kagoshima et al. (2019)**
Alamode Island
268°43'S, 67°32'W
Moss, lichen, soil Maslen and Convey (2006)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial
mat
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Anvers Island, Biscoe Point
264°49′6.85″S, 63°46′32.29″W
Soil around roots of D.antarctica Shishida and Ohyama (1989)*
Coronation Island
1,260°38'S, 45°35'W
D.antarctica Loof (1975)*
Maslen (1979b)
Dream Island
264°44′0″S, 64°14′0″W
Moss mats with green algae Shishida and Ohyama (1989)*
Galindez Island
1,265°15'S, 64°15'W
D.antarctica Loof (1975)*
Maslen (1979b)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Mesodorylaimusantarcticus Livingston Island (type locality)
162°39'22’’S, 60°21'13’’W
Sanionia sp. (type habitat);
D.antarctica;
D.antarctica-Polytrichum sp.;
A small moss tuft Sanionia sp.;
A mix grass-moss spot D.antarctica+Sanionia sp.
Nedelchev and Peneva (2000)*
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W
Russell et al. (2014)
Neko Harbour,
Antarctic Peninsula
164°50‘41“S, 62°31‘53“W
M.chipevi Livingston Island (type locality)
162°34'48’’S, 60°20'42’’W
D.antarctica on the top of flat rock near sea (type habitat);
Shallow soil with cover of green algae amongst grass on a rock;
Small tuft of D.antarctica; Polytrichum sp.+S.uncinata+D.antarctica;
A mix grass-moss spot D.antarctica+Sanionia sp.;
A large pure grass spot D.antarctica
Nedelchev and Peneva (2000)*
Livingston Island
162°38'52’’S, 60°22'24’’W
S.georgico-uncinata Müll. Hal. + D.antarctica Nedelchev and Peneva (2007)*
King George Island
162°09‘32“S, 58°27‘58“W
Russell et al. (2014)
M.imperator Emperor Island (type locality)
1,267°52'S, 68°43'W
S.uncinata and B.pseudotriquetrum (type habitat) Loof (1975)*
Maslen (1979b)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen, soil Maslen and Convey (2006)
Alamode Island
268°43'S, 67°32'W
Moss
Alexander Island
271°0′0″S, 70°0′0″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Charcot Island
1,269°45'S, 075°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Cone Island
1,267°41'S, 69°10'W
S.uncinata Loof (1975)*
Maslen (1979b)
Killinbeck Island
267°34′S, 68°5′W
Moss, lichen, soil Maslen and Convey (2006)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil,
microbial mat, freshwater
M.masleni Livingston Island (type locality)
162°39'46’’S, 60°23'29’’W
A large area of D.antarctica (type habitat);
A mix grass-moss spot D.antarctica + Sanionia sp.
Nedelchev and Peneva (2000)*
Amblydorylaimusisokaryon Elephant Island (type locality)
1,261°10’S, 55°14’W
D.antarctica (type habitat);
Polytrichum sp.
Loof (1975)*
Maslen (1979b)
Galindez Island
1,265°15'S, 64°15'W
D.antarctica Loof (1975)*
Maslen (1979b)
Intercurrence Island
1,263°55'S, 61°24'W
Brachythecium sp. Loof (1975)*
Maslen (1979b)
King George Island
262°2′S, 58°21′W
Kito (2009)
Soil Elshishka et al. (2015b)*
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Grass spot (D.antarctica);
a moss- grass (D.antarctica-Polytrichum sp.) community;
S.georgico-uncinata and D.antarctica;
C.quitensis and D.antarctica, moss;
D.antarctica and C.quitensis
Elshishka et al. (2015b)*
Nelson Island
262°18′S, 59°3′W
Moss 18S rDNA
KM092519.1
28S rDNA
KM092520.1
Elshishka et al. (2015b)***
Aphelenchoideshaguei Signy Island (type locality)
160°43’S, 45°38’W
SIRS 1 (type habitat);
SIRS 2
Maslen (1979a)*
SIRS 1;
SIRS 2
Maslen (1981)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen Maslen and Convey (2006)
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S.uncinata Newsham et al. (2020)
Alamode Island
268°43'S, 67°32'W
Moss Maslen and Convey (2006)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil, microbial mat, freshwater
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Deception Island
162°58‘42“S, 60°33‘29“W
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Livingston Island
162°39‘14“S, 60°36‘39“W
Soil Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
A.vaughani Signy Island (type locality)
160°43’S, 45°38’W
SIRS 1;
SIRS 2
Maslen (1979a)*
SIRS 1;
SIRS 2
Maslen (1981)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Laimaphelenchushelicosoma Signy Island (type locality)
160°43’S, 45°38’W
SIRS 1 (type habitat);
SIRS 2
Maslen (1979a)*
SIRS 1 Maslen (1981)
Adelaide Island
267°15′S, 68°30′W
Moss, lichen Maslen and Convey (2006)
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S.uncinata Newsham et al. (2020)
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
King George Island
162°09‘32“S, 58°27‘58“W
62°11‘48“S, 58°59‘28“W
62°11‘50“S, 58°56‘33“W
Russell et al. (2014)
Livingston Island,
162°38'S, 60°20'W
Primitive soil around roots of D.antarctica Peneva and Chipev (1999)*
Paramphidelusantarcticus King George Island (type locality)
262°2′S, 58°21′W
Lichen (type habitat) Tsalolikhin (1989)*
Eumonhysterafiliformis King George Island
162°09’S, 58°29'W
Thaw ponds, with the bottom inhabited by W.sarmentosa Janiec (1996)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
E.vulgaris King George Island
162°09’S, 58°29'W
Puddle Tsalolikhin (1989)*
Moraine ponds, their shores are inhabited mainly by S.uncinata, W.sarmentosa and B.pseudotriquetrum;
Moss banks of W.sarmentosa and W.laculosa;
Thaw ponds, with the bottom inhabited by W.sarmentosa;
Nearshore ponds, colonised by W.laculosa and W.sarmentosa
Janiec (1996)
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Geomonhysteravillosa Coronation Island
1,260°38'S, 45°35'W
Maslen (1979b)
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Elephant Islan
1,261°10’S, 55°14’W
Maslen (1979b)
Galindez Island
1,265°15'S, 64°15'W
Intercurrence Island
1,263°55'S, 61°24'W
King George Island
162°09’S, 58°29'W
W.sarmentosa and W.laculosa Janiec (1996)
King George Island
162°11‘48“S, 58°59‘28“W
62°11‘50“S, 58°56‘33“W
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Livingston Island
162°39‘14“S, 60°36‘39“W
Neko Harbour, Antarctic Peninsula
164°50‘41“S, 62°31‘53“W
Signy Island
160°43’S, 45°38’W
Maslen (1979b)
SIRS 1 Caldwell (1981)
SIRS 1;
SIRS 2
Maslen (1981)
Mixture of soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457677.1
LC457676.1
LC457675.1
LC457674.1
LC457673.1
LC457672.1
LC457671.1
Kagoshima et al. (2019)
Plectusantarcticus Danco Land coast, Beneden Head, Antarctic Peninsula (type locality)
264°46'S, 62°42'W
Freshwater algae (type habitat) de Man (1904)*
Maslen (1979b)
Moss from rock Andrássy (1998)*
Adelaide Island
167°34′S, 68°07′W
Moss, lichen, soil, microbial mat Maslen and Convey (2006)
Cephaloziellavarians (Gottsche) 18S rDNA
LC457559.1
LC457558.1
LC457557.1
LC457556.1
LC457555.1
LC457554.1
Kagoshima et al. (2019)**
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S.uncinata Newsham et al. (2020)
Alamode Island
268°43'S, 67°32'W
Spaull (1973a)
Maslen (1979b)
Moss Maslen and Convey (2006)
Alexander Island,
171°52’40’’S, 68°15’57’’W
Convey and Wynn-Williams (2002)
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat Maslen and Convey (2006)
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil, microbial mat, freshwater
Avian Island
267°46"S, 68°54"W
Spaull (1973a)
Maslen (1979b)
Blaiklock Island
1,267°33’S, 67°00’W
Charcot Island
1,269°45'S, 075°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Moss, lichen, soil Maslen and Convey (2006)
Cone Island
1,267°41'S, 69°10'W
Maslen (1979b)
Coronation Island
1,260°38'S, 45°35'W
Deception Island
262°58′37″S, 60°39′0″W
Moss from basalt debris Andrássy (1998)*
Maslen (1979b)
Deception Island
162°58‘43“S, 60°33‘24“W
Only erratic patches of mosses, lichens and algae Russell et al. (2014)
Devil Island
163°47‘54“S, 57°17‘24“W
Soil substrates of the very sandy with embedded gravel
Elephant Island
1,261°10’S, 55°14’W
Spaull (1973a)
Maslen (1979b)
S.uncinata Andrássy (1998)*
Emperor Island
267°52'S, 68°43'W
Spaull (1973a)
Maslen (1979b)
Galindez Island
1,265°15'S, 64°15'W
Guebriant Island
267°48′S, 68°25′W
Intercurrence Island
1,263°55'S, 61°24'W
Spaull (1973a)
Maslen (1979b)
Killingbeck Island
267°34′S, 68°5′W
Moss, lichen, soil Maslen and Convey (2006)
King George Island
262°2′S, 58°21′W
Soil around rhizosphere of grasses and under lichen Tsalolikhin (1989)*
King George Island
162°09’S, 58°29'W
Moraine ponds, their shores are
inhabited mainly by S.uncinata, W.sarmentosa and B.pseudotriquetrum;
Moss banks of W.sarmentosa and W.laculosa
Janiec (1996)
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W
Mosses, lichens, D.antarctica Russell et al. (2014)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Limpet Island
1,267°38'S, 68°19'W
Maslen (1979b)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Pourqoui pas Island
267°41'S, 67°28′W
Maslen (1979b)
Signy Island
160°43’S, 45°38’W
Spaull (1973a)
Spaull (1973b)
Spaull (1973c)
Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
SIRS1;
SIRS2
Caldwell (1981)
Andreaea sp. Pickup (1988)
Wharton and Block (1993)
Acrocladium sp.;
D.antarctica
Andrássy (1998)*
Plectuscf.antarcticus Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Signy Island
260°43’S, 45°36’W
Mixture of soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457687.1
LC457686.1
Kagoshima et al. (2019)
P.belgicae Cap Beneden, Danco Land, Antarctic Peninsula
(type locality)
264°46''S, 62°42"W
Algae fresh water (type habitat) de Man (1904)*
Adelaide Island
167°34′S, 68°07′W
Moss, lichen, soil, microbial mat Maslen and Convey (2006)
C.varians 18S rDNA
LC457565.1
LC457564.1
LC457563.1
LC457562.1
LC457561.1
LC457560.1
Kagoshima et al. (2019)
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S.uncinata Newsham et al. (2020)
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Charcot Island
1, 269°45'S, 075°15'W
Moss, lichen, soil
Elephant Island
1, 261°10’S, 55°14’W
P.juniperinum;
S.uncinata
Andrássy (1998)*
King George Island
262°2′S, 58°21′W
B.pseudotriquetrum and Bartramiapatens 18S rDNA LC457638.1 LC457637.1 LC457636.1 Kagoshima et al. (2019)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Rhyolite Island,
269°40′S, 68°35′W
Moss, grass Maslen and Convey (2006)
Signy Island
260°43’S, 45°36’W
Acrocladium sp.;
Usnea sp.;
SIRS 2
Andrássy (1998)*
Plectuscf.belgicae Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Deception Island
162°58‘43“S, 60°33‘24“W; 62°58‘42“S, 60°33‘29“W
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Livingston Island
162°39‘14“S, 60°36‘39“W
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Petermann Island
165°10‘29“S, 64°08‘10“W
Russell et al. (2014)
P.insolens Signy Island
(type locality)
260°43’S, 45°36’W
Thin soil on rock covered with Acrocladium sp. (type habitat); roots of D.antarctica Andrássy (1998)*
Ardley Island
162°12‘38“S, 58°56‘40“W
Soils, Sanionia sp., W.sarmentosa and Andreaearegularis Müll. Hal. Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
P.tolerans Emperor Island
(type locality)
267°52’S, 68°43’W
S.uncinata (type habitat) Andrássy (1998)*
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil, microbial mat, freshwater
Charcot Island
1,269°45'S, 075°15'W
Moss, lichen, soil
King George Island
262°2′S, 58°21′W
Kito (2009)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Rhyolite Island
269°40′S, 68°35′W
Moss, grass Maslen and Convey (2006)
Plectuscf.tolerans Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Livingston Island
162°39‘14“S, 60°36‘39“W
P.meridianus Terra Firma Island (type locality)
268°42′S, 67°32′W
Lichen (type habitat) Andrássy (1998)*
Emperor Island
267°52’S, 68°43’W
A carpet of S.uncinata
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Signy Island
260°43’S, 45°36’W
Roots of D.antarctica Andrássy (1998)*
Plectuscf.meridianus Signy Island
260°43’S, 45°36’W
Soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457691.1
LC457690.1
LC457689.1
LC457688.1
Kagoshima et al. (2019)
P.armatus Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Coronation Island
260°38'S, 45°35'W
Maslen (1979b)
Elephant Island
261°10’S, 55°14’W
Galindez Island
265°15'S, 64°15'W
King George Island
162°11‘48“S, 58°59‘28“W
Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Signy Island
160°43’S, 45°38’W
D.antarctica; C.quitensis; mosses Spaull (1973b)
Spaull (1973c)
Maslen (1979b)
Antarctenchushooperi Signy Island
(type locality)
1,260°43'S, 45°38'W
A.gainii (type habitat);
Brachythecium sp., Calliergon sp., S.filaris, Grimmiaantarctici Card., Ch.aciphyllum, P.juniperinum and D.antarctica
Spaull (1972)*
Sanionia sp.+ Calliergon sp.+ Calliergidium sp.; Polytrichum sp.;
Bryum sp. + Syntrichia sp. + Andreaea sp.;
D.antarctica
Spaull (1973a)
A.gainii, S.filaris, Calliergon-Calliergidium Spaull (1973b)
Spaull (1973c)
Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
S.uncinata Caldwell (1981)
Wharton and Block (1993)
Coronation Island
1,260°38'S, 45°35'W
D.antarctica Spaull (1972)*
D.antarctica Spaull (1973a)
Maslen (1979b)
Ditylenchusparcevivens Signy Island
(type locality)
260°43’S, 45°38’W
Fine silt (type habitat) Andrássy (1998)*
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Teratocephalustilbrooki Signy Island
(type locality)
1,260°43’S, 45°38’W
SIRS 1 (type habitat);
SIRS2
Maslen (1979a)*
‘Swamp’ moss carpets Maslen (1979b)
SIRS 1;
SIRS 2
Maslen (1981)
Andreaea sp. Pickup (1988)
Wharton and Block (1993)
Usnea sp. Andrássy (1998)*
Adelaide Island
267°15′S, 68°30′W
Moss, lichen Maslen and Convey (2006)
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Charcot Island
1, 269°45'S, 075°15'W
Moss, lichen, soil Maslen and Convey (2006)
Halfmoon Island
162°35‘45“S, 59°54‘06“W
Soil Russell et al. (2014)
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Soil
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
T.pseudolirellus Signy Island
(type locality)
160°43’S, 45°38’W
S.filaris (type habitat) Maslen (1979a)*
Alexander Island
271°0′0″S, 70°0′0″W
Moss, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Charcot Island
269°45'S, 075°15'W
Moss, lichen, soil
King George Island
262°2′S, 58°21′W
Kito (2009)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
T.rugosus Signy Island (type locality)
260°43’S, 45°38’W
SIRS 1; SIRS 2 Maslen (1979a)*
Maslen (1979b)
SIRS 1; SIRS 2 Maslen (1981)
Ardley Island
162°12‘38“S, 58°56‘40“W
Russell et al. (2014)
Deception Island
162°58‘42“S, 60°33‘29“W
Devil Island
163°47‘54“S, 57°17‘24“W
Halfmoon Island
162°35‘45“S, 59°54‘06“W
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘53“S, 58°56‘47“W
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Acrobeloidesarctowskii King George Island
(type locality)
158°29'30''W, 61°05'S
Soil around roots of D.antarctica (type habitat) Holovachov and Bostrom (2006)*
King George Island
162°09‘32“S, 58°27‘58“W
Russell et al. (2014)
Deception Island
162°58‘43“S, 60°33‘24“W; 62°58‘42“S, 60°33‘29“W
Soil devoid of vegetation or with P.crispa
Cervidelluscf.vexilliger King George Island
162°09‘32“S, 58°27‘58“W
Russell et al. (2014)
Cuticulariafirmata Signy Island (type locality)
260°43’S, 45°36’W
Fine mud (type habitat);
SIRS 2
Andrássy (1998)*
Rhabditiskrylovi King George Island (type locality)
262°2′S, 58°21′W
Flowing lake (type habitat) Tsalolikhin (1989)*
Rhabditismarina-group Deception Island
162°55‘43“S, 60°40‘48“W
Russell et al. (2014)
Peloderateres group Deception Island
162°58‘43“S, 60°33‘24“W; 62°58‘42“S, 60°33‘29“W
Russell et al. (2014)
Livingston Island
162°39‘14“S, 60°36‘39“W
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Neko Harbour, Antarctic Peninsula
164°50‘41“S, 62°31‘53“W
Russell et al. (2014)
Paulet Island
163°34‘30“S, 55°46‘59“W
Ornithogenic soils
Peloderastrongyloides group Devil Island
163°47‘54“S, 57°17‘24“W
Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Livingston Island
162°39‘14“S, 60°36‘39“W
Russell et al. (2014)
Neko Harbour, Antarctic Peninsula
164°51‘45“S, 62°26‘47“W; 64°50‘41“S, 62°31‘53“W
Peloderaparateres group Deception Island
162°58‘42“S, 60°33‘29“W
Russell et al. (2014)
King George Island
162°09‘32“S, 58°27‘58“W
Coomansusgerlachei Danco Land coast, Beneden Head
Antarctic Peninsula
(type locality)
264°46''S, 62°42"W
Algae fresh water (type habitat) de Man (1904)*
Maslen (1979b)
Andrássy (1998)*
Caleta Cierva, Antarctic Peninsula
164°10’S, 60°57’W
Soil around roots of D.antarctica Chaves (1990)*
Antarctic Peninsula Jiménez Guirado et al. (1998)*
Adelaide Island
167°34.429'S, 68°07.284'W
C.varians and S. uncinata Newsham et al. (2020)
Anchorage Island
267°36′14.01″S, 68°12′32.78″W
Moss, grass, lichen, soil,
microbial mat, freshwater
Maslen and Convey (2006)
Anvers Island, Biscoe Point
264°49′6.85″S, 63°46′32.29″W
Soil around roots of D.antarctica Shishida and Ohyama (1989)*
Anvers Island, Old Palmer
264°45′48″S, 64°5′12″W
Moss mats
Avian Island
267°46''S, 68°54"W
Sanionia sp., Bryum sp. Spaull (1973a)
Maslen (1979b)
S.uncinata, B.pseudotriquetrum Spaull (1981)
Coronation Island
1,260°38'S, 45°35'W
D.antarctica Spaull (1973a)
Maslen (1979b)
Charcot Island
1,269°45'S, 75°15'W
Soil, moss clumps, algae, various lichens Convey et al. (2000)
Deception Island
262°58′37″S, 60°39′0″W
Sanionia sp.;
Polytrichum sp.
Spaull (1973a)
Maslen (1979b)
Melting snow moisten mosses in a shingle field Andrássy (1998)*
Dream Island
264°44′0″S, 64°14′0″W
Moss mats with green algae Shishida and Ohyama (1989)*
Elephant Island
1,261°10’S, 55°14’W
Brachythecium sp.;
D.antarctica;
Sanionia sp.
Spaull (1973a)
Maslen (1979b)
Soil bellow D.antarctica Spaull (1981)
Galindez Island
1,265°15'S, 64°15'W
Brachythecium sp.;
D.antarctica;
Bryum sp.;
Sanionia sp. + Pohlia sp.
Spaull (1973a)
Maslen (1979b)
Brachytheciumaustrosalebrosum (C. Muell.) Par. Spaull (1981)
Guebriant Island
267°48′S, 68°25′W
Brachythecium sp.,
Bryum sp., Sanionia sp.
Spaull (1973a)
Maslen (1979b)
Intercurrence Island
1,263°55'S, 61°24'W
Brachythecium sp., Bryum sp., Sanionia sp. Spaull (1973a)
Maslen (1979b)
Halfmoon Island
162°35‘45“S, 59°54‘06“W
Russell et al. (2014)
King George Island
162°09’S, 58°29'W
Moraine ponds, their shores are inhabited mainly by S.uncinata, W.sarmentosa and B.pseudotriquetrum Janiec (1996)
Leonie Island
267°36′S, 68°21′W
Moss, grass, lichen, soil, microbial mat, freshwater Maslen and Convey (2006)
Mixture of soil, moss, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457644.1
LC457643.1
LC457642.1
LC457641.1
LC457640.1
LC457639.1
Kagoshima et al. (2019)**
Limpet Island
1,267°38'S, 68°19'W
Brachythecium sp., Bryum sp., Sanionia sp. Spaull (1973a)
Maslen (1979b)
King George Island
262°2′S, 58°21′W
Kito (2009)
King George Island
162°09‘32“S, 58°27‘58“W;
62°11‘48“S, 58°59‘28“W;
62°11‘50“S, 58°56‘33“W;
62°11‘53“S, 58°56‘47“W
Russell et al. (2014)
Litchfield Island
264°46′S, 64°6′W
Decaying moss mats with blue-green algae Shishida and Ohyama (1989)*
Livingston Island
262°36′S, 60°30′W
Soil under crisp of green algae;
D.antarctica-S.uncinata;
D.antarctica, P.alpinum
Peneva et al. (1996)*
Livingston Island
162°39‘14“S, 60°36‘39“W
Russell et al. (2014)
Livingston Island
262°36′S, 60°30′W
Elshishka et al. (2015a)
Nelson Island
262°18′S, 59°3W
Moss 18S rDNA
KM092523.1
28S rDNA KM092524.1
Elshishka et al. (2015b)**
Signy Island
1,260°43’S, 45°38’W
Sanionia sp.+ Calliergon sp.+ Calliergidium sp.; Polytrichum sp.; Bryum sp. + Syntrichia sp. +Andreaea sp.; D.antarctica Spaull (1973a)
Spaull (1973b)
Spaull (1973c)
Maslen (1979b)
S.uncinata and W.sarmentosa Caldwell (1981)
SIRS 1;
SIRS 2
Maslen (1981)
P.crispa from melt stream Spaull (1981)
Sanionia sp. Pickup (1988)
P.crispa;
S.uncinata
Pickup (1990)
Calliergon sp. Wharton and Block (1993)
Mixture of soil, lichen, liverworts, algae and cyanobacteria 18S rDNA
LC457661.1
LC457660.1
LC457659.1
LC457658.1
LC457657.1
LC457656.1
LC457655.1
Kagoshima et al. (2019)**

Figure 1.

Figure 1.

Terrestrial nematodes from the Maritime Antarctic - visual representation of the data matrix (shade plot): in the columns are the 37 sites and in the rows – 44 species. White and black spaces denote absence or presence of a particular species at a given site; sites and species are arranged according to the groups derived by the clustering analyses. Significant clusters were identified with SIMPROF test and visualised in red dashed lines and a range of coloured dots. Each colour represents a group of sites/islands with similar nematode fauna.

Figure 2.

Figure 2.

Distribution of terrestrial nematodes in the Maritime Antarctic. In green are presented the sites with records of terrestrial nematodes.

The order Dorylaimida is the best represented order in this Antarctic Region with five families, six genera and 13 species. The order Mononchida is represented by only one family (one genus and species).

The families Aphelenchoididae, Cephalobidae, Monhysteridae, Plectidae, Qudsianematidae, Peloderidae and Rhabditidae have a cosmopolitan distribution and, in the Maritime Antarctic, they are represented by one to two genera and two to ten species. The family Plectidae is the most diverse (10 species). Seven families (Amphidelidae, Anguinidae, Aporcelaimidae, Mononchidae, Nordiidae, Pararhyssocolpidae and Psilenchidae) are represented by only one species each.

Almost all species and four genera (Antarctenchus, Pararhyssocolpus, Amblydorylaimus and Enchodeloides) are endemic. Four species generally known as cosmopolitan are reported in some ecological studies in the Maritime Antarctic: Eumonhysteravulgaris (de Man 1880) Andrássy (1981), E.filiformis (Bastian 1865) Andrássy (1981), Geomonhysteravillosa (Bütschli 1873) Andrássy (1981) and Plectusarmatus Bütschli 1873. Of these, a description and illustrations were provided only for E.vulgaris (Tsalolikhin 1989).

Most species (27) have limited distribution registered in up to five islands of the Maritime Antarctic. Cuticulariafirmata Andrássy 1998, Cervidelluscf.vexilliger, Rhabditiskrylovi Tsalolikhin 1989, a species of the Rhabditismarina-group, Mesodorylaimusmasleni Nedelchev and Peneva 2000, Eudorylaimuscf.carteri and Plectuscf.meridianus are recorded from one island only. Six species occurred in more than 30% of the sites (C.gerlachei, P.antarcticus, Pararhyssocolpusparadoxus (Loof 1975), Eudorylaimusspaulli Loof 1975, E.coniceps Loof 1975, Enchodeloidessignyensis (Loof 1975)) with C.gerlachei and P.antarcticus being the most widespread (reported from more than half of the sites) (Figs 3, 4, 5). There are no particular trends in the distribution of most common species (occurring in more than 22% of the sites, 1/4 of the species) related to longitude or latitude, only P.paradoxus and Mesodorylaimusimperator Loof 1975 have not been reported from the most southern sites, whereas G.villosa – from the most northern localities.

Figure 3.

Figure 3.

Described species and their occurrences presented as percentages.

Figure 4.

Figure 4.

Distribution of P.antarcticus, C.gerlachei and Pararhyssocolpusparadoxus in the Maritime Antarctic. In red are presented the sites with records of these species, in green are presented the sites with records of the other Antarctic terrestrial nematodes.

Figure 5.

Figure 5.

Distribution of Eudorylaimusspaulli, E.coniceps and Enchodeloidessignyensis in the Maritime Antarctic. In red are presented the sites with records of these species, in green are presented the sites with records of the other Antarctic terrestrial nematodes.

In most of the literature sources, there are data on the microhabitats in which nematode species occurred. The nematodes have been recorded from various microhabitats: bare soil, microbial mats, moss, lichens and algae and soil around the two species of higher plants occurring in the Maritime Antarctic (Fig. 6).

Figure 6.

Figure 6.

Some microhabitats in the Maritime Antarctic. A Colobanthusquitensis B Deschampsiaantarctica C Bare soil D Syntrichia sp. E Bryum sp. F D.antarctica, C.quitensis, mosses G Sanionia sp. H Polytrichum sp. J Usnea sp. Photographs by M. Elshishka (Livingston Island).

DNA data have been generated for 11 species, but sequences for only three of them (Amblydorylaimusisokaryon (Loof 1975), P.paradoxus and E.signyensis) are supported by full morphological descriptions as per the modern taxonomic standards (Elshishka et al. 2015b, Elshishka et al. 2017, Kagoshima et al. 2019).

The review of the literature related to terrestrial nematodes from the Maritime Antarctic showed that the different parts are unevenly studied and three islands, Livingston (31 species), King George (28 species) and Signy (25 species) exhibited the richest nematode fauna (Fig. 7). Signy Island is the best studied Antarctic island with 12 new species described. This is due to the intensive studies on the nematode fauna in the 1970s and 1980s undertaken by the British Antarctic Survey (Spaull 1973a, Spaull 1973b, Spaull 1973c, Loof 1975, Maslen 1979a, Maslen 1979b, Caldwell 1981, Maslen 1981, Pickup 1988, Pickup 1990 etc.).

Figure 7.

Figure 7.

Bar chart visualising the described species (left axis) and literature sources (right axis) per each island/site.

Discussion

Our knowledge of the nematode species diversity in the Maritime Antarctic is still insufficient and fragmented. The different study efforts at the various sites do not allow gaining a clear picture of trends in the diversity and distribution of nematode species in the target Antarctic Region. Yet, the analysis provided on the basis of species presence/absence data revealed several groups of sites with similar nematode fauna forming a latitudinal gradient (Fig. 1). The high level of endemism at both the species and genus level is a characteristic feature of the nematode fauna of the region as was mentioned above. This high degree of endemism can be explained by the long-term isolation and the harsh conditions of the region (Convey et al. 2008, Nielsen et al. 2011a). It has been suggested that the Antarctic terrestrial fauna might have survived glaciation in ice-free areas and some species might be remnants of the fauna of the Gondwana super-continent (Andrássy 1998, Maslen and Convey 2006, Chown and Convey 2016, Convey et al. 2020).

The physical isolation and harsh environment of Antarctic terrestrial ecosystems is the major reason for the difficult colonisation by non-native biota (Convey and Peck 2019). In recent decades, human visits and activities in the Antarctic have provided ways (e.g. cargo, vehicles, scientific equipment, fresh food, clothing, people) to overcome these barriers (Lee and Chown 2009, Hughes et al. 2010, Chwedorzewska et al. 2013, Adams et al. 2014). So far, the probability that introduced invertebrates will become established and spread is considered to be quite low; most of them are not able to complete the life cycle and establish a stable population outside the station (Chwedorzewska et al. 2013). Although these organisms cannot survive outside at present, they are potential colonisers, which could be established in the future following the climate warming (Convey and Peck 2019). Тhe four cosmopolitan nematode taxa (E.vulgaris, E.filiformis, G.villosa and P.armatus) also reported from the Maritime Antarctic are considered to be of non-native origin by Andrássy (1998). Due to the absence or scarcity of data on the morphology of these species, at present, their origin cannot be confirmed. Future studies using an integrated taxonomic approach (i.e. simultaneous molecular and morphological characterisation) of materials obtained from pristine areas may help clarify their status. The gap in knowledge of nematode diversity, both in terms of taxonomy and distribution, is essential when assessing the introduction of non-native species. Nematode species richness in the Maritime Antarctic, which is underestimated (Nielsen et al. 2011b) may be compromised with increasing human impact in Antarctica.

The risk to Antarctic biodiversity is not limited to the transfer of alien species originating from other regions of Earth, but also concerns the transfer of native or endemic species from one part of Antarctica to another where they are not part of the indigenous biota (Convey 2008, Hughes et al. 2019, Hughes et al. 2020). This risk is greater because such species are likely to adapt well to the new location, unlike most non-native species that have been transferred to Antarctica from elsewhere (Convey 2015). The transfer of species across natural biogeographic boundaries can affect endemism in these areas. Antarctica is one of the few regions on the Planet where such boundaries still exist (Convey 2008). The nematode faunas of the Maritime and the Continental Antarctic are characterised by their uniqueness, as no overlap at the species level of the two local faunas exists (Andrássy 1998, Maslen and Convey 2006, Convey et al. 2020). This is indicative of an ancient geographical divide between these areas (Andrássy and Gibson 2007) and led Chown and Convey (2006) to define the Gressitt Line, which is located across the base of the Antarctic Peninsula.

So far, there is no evidence for the transfer and establishment of nematode species from the Continental to the Maritime Antarctic. Some nematological reports have included data on the presence of species that are emblematic of the Continental Antarctic (Plectusmurrayi Yeates 1970 and P.frigophilus Kirjanova 1958) in the Maritime part, without morphological data (see Velasco-Castrillón et al. (2014a)). In our study, these records are not included as they are most likely due to misidentification.

Regarding the biotope/microhabitat distribution of the species, the incomplete and insufficient data do not allow a definite conclusion, taking into account also the lack of research in the more inaccessible areas of the Antarctic Peninsula and the islands. Most likely the micro biotope distribution pattern is similar to that shown in the study of the nematode fauna of Cape Chelyuskin in the Arctic (Chernov et al. 1979), where species show very low biotopic associations and most of them inhabit all possible microhabitats (i.e. the majority of species are polytopic); this is also a characteristic feature of other groups of organisms in the polar regions (Chernov et al. 1979).

The major life strategy of organisms living in extreme environments is the development of tolerance and plasticity and not lack of competition and specialisation, which is typical of other biomes (Convey 1996, Chernov et al. 2011).

Comparing the two parts of the Antarctic shows that the nematode studies in the Maritime Antarctic are less represented, whereas investigations in the Continental Antarctic have been more intensive. However, the latter are primarily related to ecology (Adams et al. 2014, Velasco-Castrillón et al. 2014a, Velasco-Castrillón et al. 2018) and have identified to date 34 species of soil nematodes (Velasco-Castrillón et al. 2014a). The smaller number of species in the Continental Antarctic is associated with the harsher and more unfavourable environmental conditions. This zone includes ecosystems with the simplest terrestrial fauna on the Planet, where even nematodes are absent (Convey and McInnes 2005, Convey 2017).

The two opposite polar regions of the Earth are unevenly studied with respect to soil nematodes (Peneva et al. 2009, Holovachov 2014a). Despite the fewer taxonomic studies of terrestrial nematodes in the Arctic, 391 species have been recorded there (Holovachov 2014a). Key geographical and ecological features of both regions, such as geological history, climate, landscape, dispersal barriers and vegetation are responsible for the lower nematode diversity in the Antarctic than in the Arctic (Nielsen and Wall 2013).

Studies that include molecular data for the nematodes in the Maritime Antarctic are too rare to provide valuable information regarding nematode diversity, phylogenetics and endemism (Elshishka et al. 2015b, Elshishka et al. 2017, Kagoshima et al. 2019). The taxonomic position of only three Antarctic dorylaimid species, A.isokaryon, P.paradoxus and E.signyensis, was reconsidered on the basis of morphological and molecular characteristics of 18S rDNA (SSU rDNA) and the D2-D3 expansion fragments of 28S rDNA (LSU rDNA) (Elshishka et al. 2015b, Elshishka et al. 2017) and two new endemic genera were proposed (Pararhyssocolpus and Enchodeloides).

To advance the understanding of phylogeny and phylogeography of Antarctic nematodes, studies are required of other genes with higher evolutionary rates than 18S rDNA, such as 28S rDNA, the internal transcribed spacer (ITS in the ribosomal RNA locus) or the mitochondrial cytochrome c oxidase subunit I (COI). These genes should be included in future taxonomic analyses of Antarctic nematodes (Kagoshima et al. 2019).

The application of integrated taxonomy and DNA barcoding will substantially assist in nematode diversity studies, phylogenetics and especially the recognition of cryptic species. Further, comprehensive molecular studies will provide valuable information on the patterns of species distribution and for gaining additional knowledge on evolutionary processes and biogeography of Antarctic nematodes.

The scant studies of polar regions, in particular of the Maritime Antarctic, demand more intensive sampling and research, especially in the territories that have so far remained unexplored, in order to give a clearer and more adequate view of species diversity and trends in their microhabitat and geographical distribution. Therefore, further efforts aiming at targeted and systematic integrative studies are needed.

Supplementary Material

XML Treatment for Dorylaimida
XML Treatment for Nordiidae
XML Treatment for Enchodeloides signyensis
XML Treatment for Qudsianematidae
XML Treatment for Eudorylaimus coniceps
XML Treatment for Eudorylaimus pseudocarteri
XML Treatment for Eudorylaimus spaulli
XML Treatment for Eudorylaimus verrucosus
XML Treatment for Eudorylaimus cf. carteri
XML Treatment for Pararhyssocolpidae
XML Treatment for Pararhyssocolpus paradoxus
XML Treatment for Dorylaimidae
XML Treatment for Calcaridorylaimus signatus
XML Treatment for Mesodorylaimus antarcticus
XML Treatment for Mesodorylaimus chipevi
XML Treatment for Mesodorylaimus imperator
XML Treatment for Mesodorylaimus masleni
XML Treatment for Aporcelaimidae
XML Treatment for Amblydorylaimus isokaryon
XML Treatment for Aphelenchida
XML Treatment for Aphelenchoididae
XML Treatment for Aphelenchoides haguei
XML Treatment for Aphelenchoides vaughani
XML Treatment for Laimaphelenchus helicosoma
XML Treatment for Alaimida
XML Treatment for Amphidelidae
XML Treatment for Paramphidelus antarcticus
XML Treatment for Monhysterida
XML Treatment for Monhysteridae
XML Treatment for Eumonhystera filiformis
XML Treatment for Eumonhystera vulgaris
XML Treatment for Geomonhystera villosa
XML Treatment for Plectida
XML Treatment for Plectidae
XML Treatment for Plectus antarcticus
XML Treatment for Plectus cf. antarcticus
XML Treatment for Plectus belgicae
XML Treatment for Plectus cf. belgicae
XML Treatment for Plectus insolens
XML Treatment for Plectus tolerans
XML Treatment for Plectus cf. tolerans
XML Treatment for Plectus meridianus
XML Treatment for Plectus cf. meridianus
XML Treatment for Plectus armatus
XML Treatment for Tylenchida
XML Treatment for Psilenchidae
XML Treatment for Antarctenchus hooperi
XML Treatment for Anguinidae
XML Treatment for Ditylenchus parcevivens
XML Treatment for Rhabditida
XML Treatment for Teratocephalidae
XML Treatment for Teratocephalus tilbrooki
XML Treatment for Teratocephalus pseudolirellus
XML Treatment for Teratocephalus rugosus
XML Treatment for Cephalobidae
XML Treatment for Acrobeloides arctowskii
XML Treatment for Cervidellus cf. vexilliger
XML Treatment for Rhabditidae
XML Treatment for Cuticularia firmata
XML Treatment for Rhabditis krylovi
XML Treatment for Rhabditis marina -group
XML Treatment for Peloderidae
XML Treatment for Pelodera teres -group
XML Treatment for Pelodera strongyloides -group
XML Treatment for Pelodera parateres -group
XML Treatment for Mononchida
XML Treatment for Mononchidae
XML Treatment for Coomansus gerlachei

Acknowledgements

This study was funded by the Programme for career development of young scientists, Bulgarian Academy of Sciences, the project №80-10-214, National Centre for Polar Studies, Sofia University "St. Kliment Ohridski” and ANIDIV4, Bulgarian Academy of Sciences. The authors are thankful to Prof. Aneta Kostadinova from the Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, for the critical reading of the manuscript and helpful suggestions.

References

  1. Adams B. J., Bardgett R. D., Ayres E., Wall D. H., Aislabie J., Bamforth S., Bargagli R., Cary C., Cavacini P., Connell L., Convey P., Fell J. W., Frati F., Hogg I. D., Newsham K. K., O'Donnell A., Russell N., Seppelt R. D., Stevens M. I. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry. 2006;38:3003–3018. doi: 10.1016/j.soilbio.2006.04.030. [DOI] [Google Scholar]
  2. Adams B. J., Wall D. H., Virginia R. A., Broos E., Knox M. A. Ecological biogeography of the terrestrial nematodes of Victoria Land, Antarctica. ZooKeys. 2014;419:29–71. doi: 10.3897/zookeys.419.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrássy I. Revision of the order Monhysterida (Nematoda) inhabiting soil and waters. Opusculla Zoologica. 1981;17:13–47. [Google Scholar]
  4. Andrássy I. Nematodes in the Sixth continent. Journal of Nematode Morphology and Systematics. 1998;1:107–186. [Google Scholar]
  5. Andrássy I. Free-living nematodes of Hungary (Nematoda errantia), I. Pedozoologica Hungarica No. 3. Hungarian Natural History Museum; Budapest: 2005. 518. [Google Scholar]
  6. Andrássy I. Free-living nematodes of Hungary (Nematoda errantia), II. Pedozoologica Hungarica, No. 4. Hungarian Natural History Museum; Budapest: 2007. 496. [Google Scholar]
  7. Andrássy I., Gibson J. Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimusantarcticus sp. n. Polar Biology. 2007;30:669–678. doi: 10.1007/s00300-006-0224-4. [DOI] [Google Scholar]
  8. Andrássy I. Free-living nematodes of Hungary (Nematoda Errantia), III. Pedozoologica Hungarica, No 5. Hungarian Natural History Museum; Budapest: 2009. 608. [Google Scholar]
  9. Ara Khanum Tabassum, Mehmood Nasir, Khatoon Nasira. Nematodes as biological indicators of soil quality in the agroecosystems. Nematodes - recent advances, management and new perspectives. IntechOpen. 2022 doi: 10.5772/intechopen.99745. [DOI]
  10. Bastian H. Ch. Monograph on the Anguillulidae, or free nematoids, marine, land, and freshwater; with descriptions of 100 new species. Transactions of the Linnean Society of London. 1865;25:73–184. doi: 10.1111/j.1096-3642.1865.tb00179.x. [DOI] [Google Scholar]
  11. Bütschli O. Beitrage zur Kenntnis der freilebenden Nematoden. Nova Acta Academiae Nat Curios. 1873;35(5):1–124. [Google Scholar]
  12. Caldwell J. R. The Signy Island terrestrial reference sites: XIII. Population dynamics of the nematode fauna. British Antarctic Survey. 1981;54:33–46. [Google Scholar]
  13. Carapelli Antonio, Convey Peter, Frati Francesco, Spinsanti Giacomo, Fanciulli Pietro P. Population genetics of three sympatric springtail species (Hexapoda: Collembola) from the South Shetland Islands: evidence for a common biogeographic pattern. Biological Journal of the Linnean Society. 2017;120(4):788–803. doi: 10.1093/biolinnean/blw004. [DOI] [Google Scholar]
  14. Chauvin Camille, Trambolho Manon, Hedde Mickael, Makowski David, Cérémonie Hélène, Jimenez Anne, Villenave Cécile. Soil nematodes as indicators of heavy metal pollution: A meta-analysis. Open Journal of Soil Science. 2020;10(12):579–601. doi: 10.4236/ojss.2020.1012028. [DOI] [Google Scholar]
  15. Chaves E. Mononchida (Nematoda) from Argentina. Nematologica. 1990;36:181–193. doi: 10.1163/002925990X00149. [DOI] [Google Scholar]
  16. Chernov Y., Striganova R., Ananjeva I., Kuzmin L. In: In: Arkticheskie Tundry i Polyarnye Pustyni Taimyra. Aleksandrova V. D, Matveyeva N. V, editors. Nauka; 1979. Animal world of the polar desert at Cape Chelyuskin.35–49. Russian. [Google Scholar]
  17. Chernov Y., Matveeva N., Makarova O. Polar deserts: At the limit of life. Priroda. 2011;9:31–43. Russian. [Google Scholar]
  18. Chown Steven L., Brooks Cassandra M. The State and Future of Antarctic Environments in a Global Context. Annual Review of Environment and Resources. 2019;44(1):1–30. doi: 10.1146/annurev-environ-101718-033236. [DOI] [Google Scholar]
  19. Chown S. L., Convey P. In: Biogeography: Trends in Antarctic terrestrial and limnetic ecosystems. Bergstom D. M., Convey P., Huiskes H. L., editors. Springer Dordrecht, 55–70.; 2006. Biogeography. [DOI] [Google Scholar]
  20. Chown S. L., Convey P. Antarctic entomology. Annual Revue Entomology. 2016;61(1):119–37. doi: 10.1146/annur. [DOI] [PubMed] [Google Scholar]
  21. Chwedorzewska K., Korczak−Abshire M., Olech M., Lityńska−Zając M., Augustyniuk−Kram A. Alien invertebrates transported accidentally to the Polish Antarctic Station in cargo and on fresh foods. Polish Polar Research. 2013;34(1):55–66. doi: 10.2478/popore-2013-0005. [DOI] [Google Scholar]
  22. Clarke K. R., Gorley R. N. PRIMER v7: User Manual/Tutorial. PRIMER-E Plymouth; 2015. [Google Scholar]
  23. Collins Gemma E., Young Monica R., Convey Peter, Chown Steven L., Cary S. Craig, Adams Byron J., Wall Diana H., Hogg Ian D. Biogeography and Genetic Diversity of Terrestrial Mites in the Ross Sea Region, Antarctica. Genes. 2023;14(3) doi: 10.3390/genes14030606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Convey P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews. 1996;71(2):191–225. doi: 10.1111/j.1469-185x.1996.tb00747.x. [DOI] [Google Scholar]
  25. Convey P., Smith R. I.L>, Peat H. J., Pugh P. J.A. The terrestrial biota of Charcot Island, eastern Bellingshausen Sea, Antarctica: an example of extreme isolation. Antarctic Science. 2000;12:406–413. doi: 10.1017/S095410200000047X. [DOI] [Google Scholar]
  26. Convey P., Wynn-Williams D. Antarctic soil nematode response to artificial climate amelioration. European Journal of Soil Biology. 2002;38:255–259. doi: 10.1016/s1164-5563(02)01155-x. [DOI] [Google Scholar]
  27. Convey P, McInnes S J. Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology. 2005;86(2):519–527. doi: 10.1890/04-0684. [DOI] [Google Scholar]
  28. Convey P. Antarctic terrestrial ecosystems: Responses to environmental change. Polarforschung. 2006;75:101–111. [Google Scholar]
  29. Convey Peter. In: Non-native species in the Antarctic. Rogan-Finnemore M., editor. Proceedings. Christchurch: Gateway Antarctica; 2008. Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions.97-130 [Google Scholar]
  30. Convey P., Gibson J., Hillenbrand D., Hodgson A., Pugh J. A., Smellie L., Stevens I. Antarctic terrestrial life - challenging the history of the frozen continent? Biological Reviews. 2008;83:103–117. doi: 10.1111/j.1469-185X.2008.00034.x. [DOI] [PubMed] [Google Scholar]
  31. Convey P. In: Exploring the last continent: an introduction to Antarctica. Liggett Daniela, Storey Bryan, Cook Yvonne, Meduna Veronika., editors. Springer; Switzerland: 2015. Alien invasions. The impact of non-native species: changing the face of life on land in Antarctica?539-555. [DOI] [Google Scholar]
  32. Convey P. Antarctic Ecosystems. Reference Module in Life Sciences. 2017 doi: 10.1016/b978-0-12-809633-8.02182-8. [DOI]
  33. Convey P., Peck L. S. Antarctic environmental change and biological responses. Science Advances. 2019;5(11) doi: 10.1126/sciadv.aaz0888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Convey P., Biersma E. M., Casanova-Katny A., Maturana C. S. In: Past Antarctica: Paleoclimatology and climate change. Oliva M., Ruiz-Fernandez J., editors. Elsevier; 2020. Refuges of Antarctic diversity.181-200. [DOI] [Google Scholar]
  35. Courtright E. M., Wall D. H., Virginia R. A., Frisse L. M., Vida J. T., Thomas W. K. Nuclear and mitochondrial DNA sequence diversity in the Antarctic nematode Scottnema lindsayae. Journal of Nematology. 2000;32:143–153. [PMC free article] [PubMed] [Google Scholar]
  36. Czechowski P., J Clarke L., Cooper A., I Stevens M. A primer to metabarcoding surveys of Antarctic terrestrial biodiversity. Antarctic Science. 2017;29:3–15. doi: 10.1017/S0954102016000389. [DOI] [Google Scholar]
  37. de Man J. G. Die einheimischen, frei in der reinen Erde und im süßen Wasser lebende Nematoden monographisch bearbeitet. Vorläufiger Bericht und descriptiv-systematischer Theil. Tijdschrift der Nederlandische Dierkundige Vereeniging. 1880;5:1–104. [Google Scholar]
  38. de Man J. G. Nematodes libres. Result. voyage S.Y Belgica, Zoology. 1904;55 [Google Scholar]
  39. Du Preez G, Daneel M, De Goede R, Du Toit M J, Ferris H, Fourie H, Geisen S, Kakouli-Duarte T, Korthals G, Sánchez-Moreno S, Schmidt Jan H. Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry. 2022;169 doi: 10.1016/j.soilbio.2022.108640. [DOI] [Google Scholar]
  40. Ebach M., Pugh P. J.A., Convey P. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. http://www.jstor.org/stable/20488312. Journal of Biogeography. 2008;35(12):2176–2186. doi: 10.1111/j.1365-2699.2008.01953.x. [DOI] [Google Scholar]
  41. Elshishka M., Lazarova S., Peneva V. Terrestrial nematodes of Livingston Island, maritime Antarctica. In: Pimpirev Ch. & Chipev N. (Eds). Bulgarian Antarctic Research. A Synthesis. "St Kliment Ohridski". 2015;(BN:978-954-07-3939-7):320–334.
  42. Elshishka M., Lazarova S., Radoslavov G., Hristov P., Peneva V. New data on two remarkable antarctic species Amblydorylaimusisokaryon (Loof, 1975) Andrássy, 1998 and Pararhyssocolpusparadoxus (Loof, 1975) gen. n., comb. n. (Nematoda, Dorylaimida). ZooKeys. 2015;511:25–68. doi: 10.3897/zookeys.511.9793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Elshishka M., Lazarova S., Radoslavov G., Hristov P., Peneva V. Biogeography and phylogenetic position of Enchodeloidessignyensis (Loof, 1975) gen. n. comb. n. from Maritime Antarctic (Nematoda, Nordiidae). ZooKeys. 2017;697:37–58. doi: 10.3897/zookeys.697.13770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ferris H., Bongers T., de Goede R. G.M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology. 2001;18(1):13–29. doi: 10.1016/s0929-1393(01)00152-4. [DOI] [Google Scholar]
  45. Freckman D. W., Virginia R. A. Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology. 1997;78:363–369. doi: 10.1890/0012-9658. [DOI] [Google Scholar]
  46. Gantait V. Diversity of nematodes in Antarctica under changing climatic conditions. Journal of Crop and Weed. 2014;10(2) [Google Scholar]
  47. Greene S. W. Studies in Colobanthusquitensis (Kunth) Bartl. And Deschampsiaantarctica Desv. I Introduction. British Antarctic Survey Bulletin. 1970;23:19–24. [Google Scholar]
  48. Holdgate M. W. Terrestrial Ecosystems in the Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences. 1977;279(963):5–25. doi: 10.1098/rstb.1977.0068. [DOI] [Google Scholar]
  49. Holovachov O., Bostrom S. Description of Acrobeloidesarctowskii sp. n. (Rhabditida: Cephalobidae) from King George Island, Antarctica. Russian Journal of Nematology. 2006;14:51–56. [Google Scholar]
  50. Holovachov O. Nematodes from terrestrial and freshwater habitats in the Arctic. Biodiversity Data Journal. 2014;2:1165. doi: 10.3897/BDJ.2.e1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Holovachov O. In: Handbook of Zoology. Gastrotricha, Cycloneuralia, Gnathifera. Volume 2: Nematoda. Schmidt-Rhaesa Andreas., editor. De Gruyter; 2014. Order Plectida Gadea, 1973. [DOI] [Google Scholar]
  52. Hughes K. A., Convey P., Maslen N. R., Smith R. I. L. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions. 2010;12(4):875–891. doi: 10.1007/s10530-009-9508-2. [DOI] [Google Scholar]
  53. Hughes K. A., Convey Peter, Pertierra Luis R., Vega Greta C., Aragón Pedro, Olalla-Tárraga Miguel Á. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment. Journal of Environmental Management. 2019;232:73–89. doi: 10.1016/j.jenvman.2018.10.095. [DOI] [PubMed] [Google Scholar]
  54. Hughes K. A., Pescott O. L., Peyton J., Adriaens T., Cottier‐Cook E. J., Key G., Rabitsch W., Tricarico E., Barnes D. K. A., Baxter N., Belchier M., Blake D., Convey P., Dawson W., Frohlich D., Gardiner L. M., González‐Moreno P., James R., Malumphy C., Martin S., Martinou A. F., Minchin D., Monaco A., Moore N., Morley S. A., Ross K., Shanklin J., Turvey K., Vaughan D., Vaux A. G. C., Werenkraut V., Winfield I. J., Roy H. E. Invasive non‐native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biology. 2020;26(4):2702–2716. doi: 10.1111/gcb.14938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Iakovenko N. S., Smykla J., Convey P., Kašparová E., Kozeretska I. A., Trokhymets V., Dykyy I., Plewka M., Devetter M., Duriš Z., Janko K. Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia. 2015;761(1):5–43. doi: 10.1007/s10750-015-2463-2. [DOI] [Google Scholar]
  56. Jairajpuri M. S., Khan W. U. Studies on Mononchida of India. IX. Further division of the genus Clarkus Jairajpuri, 1970 with proposai of Coomansus n. gen. and descriptions of two new species. Nematologica. 1977;23:89–96. doi: 10.1163/187529270x00153. [DOI] [Google Scholar]
  57. Janiec K. The comparison of freshwater invertebrates of Spitsbergen (Arctic) and King George Island (Antarctic) Polish Polar Research. 1996;17:173–202. [Google Scholar]
  58. Jiménez Guirado D., Wouts W. M., Bello A. Morphometric studies on Coomansus Jairajpuri & Khan, 1977 (Nematoda: Mononchida) and descriptions of two new species from the Subantarctic region. Fundamental and Applied Nematology. 1998;21:527–546. [Google Scholar]
  59. Kagoshima H., Maslen R., Kito K., Imura S., Niki H., Convey P. Integrated taxonomy combining morphological and molecular biological analyses of soil nematodes from maritime Antarctica. Polar Biology. 2019;42:877–887. doi: 10.1007/s00300-019-02482-8. [DOI] [Google Scholar]
  60. Kirjanova E. S. Antarkticheskie predstaviteli presnovodnykh nematod roda Plectus Bastian (Nematodes Plectidae. Information Bulletin of the Soviet Antarctic Expedition. 1958;3:101–103. [Google Scholar]
  61. Kito K. Taxonomical and ecological studies of free-living nematodes carried out in Antarctica as a cooperative research program of NIPR. Sapporo Medical Journal. 2009;78:13–18. [Google Scholar]
  62. Lee J. E., Chown S. L. Breaching the dispersal barrier to invasion: quantification and management. Ecological Applications. 2009;19(7):1944–1959. doi: 10.1890/08-2157.1. [DOI] [PubMed] [Google Scholar]
  63. Longton R. E. Vegetation ecology and classification in the Antarctic zone. Canadian Journal of Botany. 1979;57(20):2264–2278. doi: 10.1139/b79-273. [DOI] [Google Scholar]
  64. Loof P. A.A. Dorylaimoidea from some subantarctic islands. Nematologica. 1975;21:219–255. doi: 10.1163/187529275X00581. [DOI] [Google Scholar]
  65. Maslen N. R. Six new nematode species from the maritime Antarctic. Nematologica. 1979;25(3):288–308. doi: 10.1163/187529279x00028. [DOI] [Google Scholar]
  66. Maslen N. R. Additions to the nematode fauna of the Antarctic Region with keys to taxa. British Antarctic Survey Bulletin. 1979;49:207–229. [Google Scholar]
  67. Maslen N. R. The Signy Island terrestrial reference sites: XII. Population ecology of nematodes with additions to the fauna. British Antarctic Survey Bulletin. 1981;53:57–75. [Google Scholar]
  68. Maslen N. R., Convey P. Nematode diversity and distribution in the southern maritime Antarctic - clues to history? Soil Biology and Biochemistry. 2006;38:3141–3151. doi: 10.1016/j.soilbio.2005.12.007. [DOI] [Google Scholar]
  69. Nedelchev S., Peneva V. Description of three new species genus Mesodorylaimus Andrássy 1959 (Nematoda, Dorylaimidae) in Livingston Island, Antarctic a notes M.imperator Loof 1975. Russian Journal of Nematology. 2000;8:161–172. [Google Scholar]
  70. Nedelchev S., Peneva V. Description of the male of Mesodorylaimuschipevi Nedelchev & Peneva, 2000 (Nematoda: Dorylaimidae) from Livingston Island, Antarctica. Russian Journal of Nematology. 2007;15:75–77. [Google Scholar]
  71. Neher D A. Role of nematodes in soil health and their use as indicators. Journal of nematology. 2001;33(4):161–8. [PMC free article] [PubMed] [Google Scholar]
  72. Neher D. A. Ecology of plant and free-living nematodes in natural and agricultural coil. Annual Review of Phytopathology. 2010;48(1):371–394. doi: 10.1146/annurev-phyto-073009-114439. [DOI] [PubMed] [Google Scholar]
  73. Newman Louise, Convey P, Gibson JAE, Linse K. Antarctic Paleobiology: Glacial refugia and constraints on past ice-sheet reconstructions. PAGES news. 2009;17(1):22–24. doi: 10.22498/pages.17.1.22. [DOI] [Google Scholar]
  74. Newsham K., Hall R., Maslen N. R. Experimental warming of bryophytes increases the population density of the nematode Plectusbelgicae in maritime Antarctica. Antarctic Science. 2020;33(2):165–173. doi: 10.1017/s0954102020000528. [DOI] [Google Scholar]
  75. Nielsen U. N., Wall D. H., Adams B. J., Virginia R. A. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology. 2011;34:1701–1711. doi: 10.1007/s00300-011-1021-2. [DOI] [Google Scholar]
  76. Nielsen U. N., Wall D. H., Li G., Toro M., Adams B. J., Virginia R. A. Nematode communities of Byers Peninsula, Livingston Island, maritime Antarctica. Antarctic Science. 2011;23(4):349–357. doi: 10.1017/s0954102011000174. [DOI] [Google Scholar]
  77. Nielsen U. N., Wall D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters. 2013;16(3):409–419. doi: 10.1111/ele.12058. [DOI] [PubMed] [Google Scholar]
  78. Ochyra R. The moss flora of King George Island, Antarctica. Polish Academy of Sciences; 1998. [Google Scholar]
  79. Peneva V., Chipev N., Nedelchev S. Prionchuluspunctatus Cobb, 1917, a new record from Patagonia (Chile), with notes on other mononchids from Antarctic Regions. Bulgarian Antarctic Research Life Sciences. 1996:93–101.
  80. Peneva V., Chipev N. Laimaphelenchushelicosoma (Maslen, 1979) n. comb. (Nematoda: Aphelenchida) from Livingston Island. In: Golemansky V, Chipev N (Eds) Bulgarian Antarctic Research. Life Sciences. Pensoft. Sofia - Moscow. 1999;2:57–61. [Google Scholar]
  81. Peneva V., Lazarova S., Chipev N. In: Bulgarian Antarctic Research. Life Sciences. Golemansky V., Chipev N., editors. Vol.3. Pensoft; Sofia-Moscow: 2002. Description of the male of Enchodelus (Rotundus) signyensis Loof, 1975 (Nematoda, Nordiidae) from Livingston Island, Antarctica, and notes on its morphology and distribution.83-90 [Google Scholar]
  82. Peneva V., Lazarova S., Elshishka M., Makarova O., Penev L. In: Species and communities in extreme environment. Golovatch S. I., Makarova O. L., Babenko A. B., Penev L. D., editors. Pensoft Publishers & KMK Scientific Press; Sofia - Moscow: 2009. Nematode assemblages of hair-grass (Deschampsia spp.) microhabitats from polar and alpine deserts in Arctic and Antaractic.419-438 [Google Scholar]
  83. Pickup J. Ecophysiological studies of terrestrial free-living nematodes of Signy Island. British Antarctic Survey Bulletin. 1988;81:77–81. [Google Scholar]
  84. Pickup J. Seasonal variation in the cold-hardiness of a free-living predatory antarctic nematode, Coomansusgerlachei (Mononchidae) Polar Biology. 1990;10:307–315. doi: 10.2307/2389345. [DOI] [Google Scholar]
  85. Russell D. J., Hohberg K., Potapov M., Brückner A., Otte V., Christian A. Native terrestrial invertebrate fauna from the northern Antarctic Peninsula: new records, state of current knowledge and ecological preferences - Summary of a German federal study. Soil Organisms. 2014;86:1–58. [Google Scholar]
  86. Shishida Y., Ohyama Y. A note on the terrestrial nematodes around Palmer Station, Antarctica (Extend abstract. Proceeding of the NIPR Symposium on Polar Biology. 1989;2:223–224. [Google Scholar]
  87. Short K. A., Sands C. J., McInnes S. J., Pisani D., Stevens M. I., Convey P. An ancient, Antarctic-specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus. Molecular Phylogenetics and Evolution. 2022;170 doi: 10.1016/j.ympev.2022.107429. [DOI] [PubMed] [Google Scholar]
  88. Smith R. I.L. In: Antarctic ecology. Laws R M, editor. Vol. 1. Academic Press; 1984. Terrestrial plant biology of the sub-Antarctic and Antarctic.61-162 [Google Scholar]
  89. Spaull V. W. Antarctenchushooperi, gen., n. sp. (Nematoda: Dolichodoridae) from Signy Island, South Orkney Islands, with the erection of a new subfamily. Nematologica. 1972;18:353–9. doi: 10.1163/187529272X00629. [DOI] [Google Scholar]
  90. Spaull V. W. Distribution of soil nematodes in the maritime Antarctic. British Antarctic Survey Bulletin. 1973;37:1–6. [Google Scholar]
  91. Spaull V. W. Qualitative and quantitative distribution of soil nematodes of Signy Island, South Orkney Islands. British Antarctic Survey Bulletin. 1973;(33-34):177–184.
  92. Spaull V. W. Distribution of nematode feeding group at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. British Antarctic Survey Bulletin. 1973;37:21–32. [Google Scholar]
  93. Spaull V. W. Observations on Coomansusgerlachei (de Man) (Nematoda: Mononchidae), a predacious nematode from the Antarctic. British Antarctic Survey Bulletin. 1981;(53):195–200.
  94. Stevens M. I., Mackintosh A. N. Location, location, location: survival of Antarctic biota requires the best real estate. Biological Letters. 2023;19:20220590. doi: 10.1098/rsbl.2022.0590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Taylor Lois S., Phillips Gary, Bernard Ernest C., DeBruyn Jennifer M. Soil nematode functional diversity, successional patterns, and indicator taxa associated with vertebrate decomposition hotspots. PLOS One. 2020;15(11) doi: 10.1371/journal.pone.0241777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Tilbrook P. J. The Signy Island terrestrial reference sites: 1. An introduction. British Antarctic Survey Bulletin. 1973;33 & 34:65–76. [Google Scholar]
  97. Treonis A. M., Wall D. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integrative and Comparative Biology. 2005;45(5):741–750. doi: 10.1093/icb/45.5.741. [DOI] [PubMed] [Google Scholar]
  98. Tsalolikhin S. J. Rare and new nematode species from Antarctica. Trudi Zoologicheskogo Instituta Akademii Nauk, Leningrad. 1989;194:96–101. Russian. [Google Scholar]
  99. van den Hoogen Johan, Geisen Stefan, Routh Devin, Ferris Howard, Traunspurger Walter, Wardle David A., de Goede Ron G. M., Adams Byron J., Ahmad Wasim, Andriuzzi Walter S., Bardgett Richard D., Bonkowski Michael, Campos-Herrera Raquel, Cares Juvenil E., Caruso Tancredi, de Brito Caixeta Larissa, Chen Xiaoyun, Costa Sofia R., Creamer Rachel, Mauro da Cunha Castro José, Dam Marie, Djigal Djibril, Escuer Miguel, Griffiths Bryan S., Gutiérrez Carmen, Hohberg Karin, Kalinkina Daria, Kardol Paul, Kergunteuil Alan, Korthals Gerard, Krashevska Valentyna, Kudrin Alexey A., Li Qi, Liang Wenju, Magilton Matthew, Marais Mariette, Martín José Antonio Rodríguez, Matveeva Elizaveta, Mayad El Hassan, Mulder Christian, Mullin Peter, Neilson Roy, Nguyen T. A. Duong, Nielsen Uffe N., Okada Hiroaki, Rius Juan Emilio Palomares, Pan Kaiwen, Peneva Vlada, Pellissier Loïc, Carlos Pereira da Silva Julio, Pitteloud Camille, Powers Thomas O., Powers Kirsten, Quist Casper W., Rasmann Sergio, Moreno Sara Sánchez, Scheu Stefan, Setälä Heikki, Sushchuk Anna, Tiunov Alexei V., Trap Jean, van der Putten Wim, Vestergård Mette, Villenave Cecile, Waeyenberge Lieven, Wall Diana H., Wilschut Rutger, Wright Daniel G., Yang Jiue-in, Crowther Thomas Ward. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572(7768):194–198. doi: 10.1038/s41586-019-1418-6. [DOI] [PubMed] [Google Scholar]
  100. Velasco-Castrillón A., Stevens M. Morphological and molecular diversity at a regional scale: A step closer to understanding Antarctic nematode biogeography. Soil Biology & Biochemistry. 2014;70:272–284. doi: 10.1016/j.soilbio.2013.12.016. [DOI] [Google Scholar]
  101. Velasco-Castrillón Alejandro, Gibson John A. E., Stevens Mark I. A review of current Antarctic limno-terrestrial microfauna. Polar Biology. 2014;37(10):1517–1531. doi: 10.1007/s00300-014-1544-4. [DOI] [Google Scholar]
  102. Velasco-Castrillón A., Page T. J., Gibson J. A.E., Stevens M. I. Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity. 2014;15:130–142. doi: 10.1080/14888386.2014.930717. [DOI] [Google Scholar]
  103. Velasco-Castrillón Alejandro, Hawes Ian, Stevens Mark I. 100 years on: a re-evaluation of the first discovery of microfauna from Ross Island, Antarctica. Antarctic Science. 2018;30(4):209–219. doi: 10.1017/s095410201800007x. [DOI] [Google Scholar]
  104. Wharton D. A., Block W. Freezing tolerance in some Antarctic nematodes. Functional Ecology. 1993;7:578–584. doi: 10.2307/2390134. [DOI] [Google Scholar]
  105. Wharton D. A. Cold tolerance strategies in nematodes. Biological Reviews. 1995;70(1):161–185. doi: 10.1111/j.1469-185x.1995.tb01442.x. [DOI] [PubMed] [Google Scholar]
  106. Yeates G. W. Two Terrestrial Nematodes from the McMurdo Sound Region Antarctica, with a note on Anaplectusarenicola Killick, 1964. Journal of Helminthology. 1970;44:27–34. doi: 10.1017/S0022149X00021416. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

XML Treatment for Dorylaimida
XML Treatment for Nordiidae
XML Treatment for Enchodeloides signyensis
XML Treatment for Qudsianematidae
XML Treatment for Eudorylaimus coniceps
XML Treatment for Eudorylaimus pseudocarteri
XML Treatment for Eudorylaimus spaulli
XML Treatment for Eudorylaimus verrucosus
XML Treatment for Eudorylaimus cf. carteri
XML Treatment for Pararhyssocolpidae
XML Treatment for Pararhyssocolpus paradoxus
XML Treatment for Dorylaimidae
XML Treatment for Calcaridorylaimus signatus
XML Treatment for Mesodorylaimus antarcticus
XML Treatment for Mesodorylaimus chipevi
XML Treatment for Mesodorylaimus imperator
XML Treatment for Mesodorylaimus masleni
XML Treatment for Aporcelaimidae
XML Treatment for Amblydorylaimus isokaryon
XML Treatment for Aphelenchida
XML Treatment for Aphelenchoididae
XML Treatment for Aphelenchoides haguei
XML Treatment for Aphelenchoides vaughani
XML Treatment for Laimaphelenchus helicosoma
XML Treatment for Alaimida
XML Treatment for Amphidelidae
XML Treatment for Paramphidelus antarcticus
XML Treatment for Monhysterida
XML Treatment for Monhysteridae
XML Treatment for Eumonhystera filiformis
XML Treatment for Eumonhystera vulgaris
XML Treatment for Geomonhystera villosa
XML Treatment for Plectida
XML Treatment for Plectidae
XML Treatment for Plectus antarcticus
XML Treatment for Plectus cf. antarcticus
XML Treatment for Plectus belgicae
XML Treatment for Plectus cf. belgicae
XML Treatment for Plectus insolens
XML Treatment for Plectus tolerans
XML Treatment for Plectus cf. tolerans
XML Treatment for Plectus meridianus
XML Treatment for Plectus cf. meridianus
XML Treatment for Plectus armatus
XML Treatment for Tylenchida
XML Treatment for Psilenchidae
XML Treatment for Antarctenchus hooperi
XML Treatment for Anguinidae
XML Treatment for Ditylenchus parcevivens
XML Treatment for Rhabditida
XML Treatment for Teratocephalidae
XML Treatment for Teratocephalus tilbrooki
XML Treatment for Teratocephalus pseudolirellus
XML Treatment for Teratocephalus rugosus
XML Treatment for Cephalobidae
XML Treatment for Acrobeloides arctowskii
XML Treatment for Cervidellus cf. vexilliger
XML Treatment for Rhabditidae
XML Treatment for Cuticularia firmata
XML Treatment for Rhabditis krylovi
XML Treatment for Rhabditis marina -group
XML Treatment for Peloderidae
XML Treatment for Pelodera teres -group
XML Treatment for Pelodera strongyloides -group
XML Treatment for Pelodera parateres -group
XML Treatment for Mononchida
XML Treatment for Mononchidae
XML Treatment for Coomansus gerlachei

Articles from Biodiversity Data Journal are provided here courtesy of Pensoft Publishers

RESOURCES