Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Sep;88(1):46–51. doi: 10.1104/pp.88.1.46

Elicitor-Induced l-Tyrosine Decarboxylase from Plant Cell Suspension Cultures 1

I. Induction and Purification

Ivano A Marques 1, Peter E Brodelius 1
PMCID: PMC1055523  PMID: 16666277

Abstract

l-Tyrosine decarboxylase (EC 4.1.1.25) activity was induced in cell suspension cultures of Thalictrum rugosum Ait. and Eschscholtzia californica Cham. with a yeast polysaccharide preparation (elicitor). The highest l-tyrosine decarboxylase activity in extracts from 7-day-old cell cultures of E. californica was observed 5 hours after addition of 30 to 40 micrograms elicitor per gram cell fresh weight. The enzyme extracted from cells of E. californica was purified 1540-fold to a specific activity of 2.6 micromoles CO2 produced per minute per milligram protein at pH 8.4 and 30°C. Purified enzyme from T. rugosum showed a specific activity of 0.18 micromoles per minute per milligram protein. The purification procedure involved ammonium sulfate fractionation, anion-exchange fast protein liquid chromatography, ultrafiltration, and hydrophobic interaction chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme from the two plant cell cultures had subunits of identical molecular weight (56,300 ± 300 daltons.

Full text

PDF
46

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Christenson J. G., Dairman W., Udenfriend S. Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney. Arch Biochem Biophys. 1970 Nov;141(1):356–367. doi: 10.1016/0003-9861(70)90144-x. [DOI] [PubMed] [Google Scholar]
  3. Gamborg O. L., Miller R. A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. doi: 10.1016/0014-4827(68)90403-5. [DOI] [PubMed] [Google Scholar]
  4. Gügler K., Funk C., Brodelius P. Elicitor-induced tyrosine decarboxylase in berberine-synthesizing suspension cultures of Thalictrum rugosum. Eur J Biochem. 1988 Jan 4;170(3):661–666. doi: 10.1111/j.1432-1033.1988.tb13748.x. [DOI] [PubMed] [Google Scholar]
  5. Hahn M. G., Albersheim P. Host-Pathogen Interactions: XIV. Isolation and Partial Characterization of an Elicitor from Yeast Extract. Plant Physiol. 1978 Jul;62(1):107–111. doi: 10.1104/pp.62.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES