Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Oct;88(2):429–434. doi: 10.1104/pp.88.2.429

Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles

Jean-Pierre Blein 1,2, Isabelle Bourdil 1,2, Michel Rossignol 1,2, René Scalla 1,2
PMCID: PMC1055594  PMID: 16666321

Abstract

The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H+-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H+-ATPase. C. beticola toxin markedly inhibited ATP dependent H+-transport, and this effect increased with the length of preincubation with the toxin. The same observations were made concerning ATPase activity. Inhibition of H+-transport was greater at pH 7.3 than at pH 5.7. Lineweaver-Burk plot analysis showed that inhibition kinetics were competitive with respect to ATP. These data suggest a direct effect of C. beticola toxin on vanadate-sensitive ATPase presumed to be associated with the plasma membrane.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke N. E., Hodges T. K. Inhibition of adenosine triphosphatase activity of the plasma membrane fraction of oat roots by diethylstilbestrol. Plant Physiol. 1979 Jan;63(1):48–52. doi: 10.1104/pp.63.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balke N. E., Hodges T. K. Plasma membrane adenosine triphosphatase of oat roots: activation and inhibition by mg and ATP. Plant Physiol. 1975 Jan;55(1):83–86. doi: 10.1104/pp.55.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blein J. P., de Cherade X., Bergon M., Calmon J. P., Scalla R. Inhibition of Adenosine Triphosphatase Activity from a Plasma Membrane Fraction of Acer pseudoplatanus Cells by 2,2,2-Trichloroethyl 3,4-Dichlorocarbanilate. Plant Physiol. 1986 Mar;80(3):782–785. doi: 10.1104/pp.80.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Briskin D. P., Poole R. J. Characterization of the solubilized plasma membrane ATPase of red beet. Plant Physiol. 1984 Sep;76(1):26–30. doi: 10.1104/pp.76.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dufour J. P., Goffeau A., Tsong T. Y. Active proton uptake in lipid vesicles reconstituted with the purified yeast plasma membrane ATPase. Fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine. J Biol Chem. 1982 Aug 25;257(16):9365–9371. [PubMed] [Google Scholar]
  7. Dupont F. M., Burke L. L., Spanswick R. M. Characterization of a partially purified adenosine triphosphatase from a corn root plasma membrane fraction. Plant Physiol. 1981 Jan;67(1):59–63. doi: 10.1104/pp.67.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fanger B. O. Adaptation of the Bradford protein assay to membrane-bound proteins by solubilizing in glucopyranoside detergents. Anal Biochem. 1987 Apr;162(1):11–17. doi: 10.1016/0003-2697(87)90004-2. [DOI] [PubMed] [Google Scholar]
  9. Gallagher S. R., Leonard R. T. Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol. 1982 Nov;70(5):1335–1340. doi: 10.1104/pp.70.5.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Poole R. J., Briskin D. P., Krátký Z., Johnstone R. M. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549–556. doi: 10.1104/pp.74.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES