Abstract
The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and photorespiration exceeded photosynthesis with lethal results. At higher salinities, although photosynthesis was inhibited, respiration was low and carbon fixation adequate to offset increased photorespiration.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Larsen P. O., Cornwell K. L., Gee S. L., Bassham J. A. Amino Acid Synthesis in Photosynthesizing Spinach Cells : EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM CO(2). Plant Physiol. 1981 Aug;68(2):292–299. doi: 10.1104/pp.68.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macler B. A. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri. Plant Physiol. 1986 Sep;82(1):136–141. doi: 10.1104/pp.82.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]