Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Dec;88(4):1026–1030. doi: 10.1104/pp.88.4.1026

Regulation of Steady State Pyruvate Dehydrogenase Complex Activity in Plant Mitochondria 1

Reactivation Constraints

Raymond J A Budde 1, Douglas D Randall 1
PMCID: PMC1055709  PMID: 16666415

Abstract

The requirements for reactivation (dephosphorylation) of the pea (Pisum sativum L.) leaf mitochondrial pyruvate dehydrogenase complex (PDC) were studied in terms of magnesium and ATP effects with intact and permeabilized mitochondria. The requirement for high concentrations of magnesium for reactivation previously reported with partially purified PDC is shown to affect inactivation rather than reactivation. The observed rate of inactivation catalyzed by pyruvate dehydrogenase (PDH) kinase is always greater than the reactivation rate catalyzed by PDH-P phosphatase. Thus, reactivation would only occur if ATP becomes limiting. However, pyruvate which is a potent inhibitor of inactivation in the presence of thiamine pyrophosphate, results in increased PDC activity. Analysis of the dynamics of the phosphorylation-dephosphorylation cycle indicated that the covalent modification was under steady state control. The steady state activity of PDC was increased by addition of pyruvate. PDH kinase activity increased threefold during storage of mitochondria suggesting that there may be an unknown level of regulation exerted on the enzyme complex.

Full text

PDF
1026

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Budde R. J., Holbrook G. P., Chollet R. Studies on the dark/light regulation of maize leaf pyruvate, orthophosphate dikinase by reversible phosphorylation. Arch Biochem Biophys. 1985 Oct;242(1):283–290. doi: 10.1016/0003-9861(85)90503-x. [DOI] [PubMed] [Google Scholar]
  2. Budde R. J., Randall D. D. Regulation of pea mitochondrial pyruvate dehydrogenase complex activity: inhibition of ATP-dependent inactivation. Arch Biochem Biophys. 1987 Nov 1;258(2):600–606. doi: 10.1016/0003-9861(87)90382-1. [DOI] [PubMed] [Google Scholar]
  3. Camp P. J., Randall D. D. Purification and Characterization of the Pea Chloroplast Pyruvate Dehydrogenase Complex : A Source of Acetyl-CoA and NADH for Fatty Acid Biosynthesis. Plant Physiol. 1985 Mar;77(3):571–577. doi: 10.1104/pp.77.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hucho F., Randall D. D., Roche T. E., Burgett M. W., Pelley J. W., Reed L. J. -Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch Biochem Biophys. 1972 Jul;151(1):328–340. doi: 10.1016/0003-9861(72)90504-8. [DOI] [PubMed] [Google Scholar]
  5. Jope R., Blass J. P. A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver. Biochem J. 1975 Sep;150(3):397–403. doi: 10.1042/bj1500397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Ludlow J. W., Guikema J. A., Consigli R. A. Use of 5-(4-dimethylaminobenzylidene)rhodanine in quantitating silver grains eluted from autoradiograms of biological material. Anal Biochem. 1986 Apr;154(1):104–109. doi: 10.1016/0003-2697(86)90502-6. [DOI] [PubMed] [Google Scholar]
  8. Midgley P. J., Rutter G. A., Thomas A. P., Denton R. M. Effects of Ca2+ and Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within toluene-permeabilized mitochondria. Biochem J. 1987 Jan 15;241(2):371–377. doi: 10.1042/bj2410371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miernyk J. A., Randall D. D. Some properties of pea mitochondrial phospho-pyruvate dehydrogenase-phosphatase. Plant Physiol. 1987 Feb;83(2):311–315. doi: 10.1104/pp.83.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pedersen P. L., Catterall W. A. The use of thin-layer chromatography on poly(ethyleneimine) cellulose to facilitate assays of ATP-ADP exchange, ATP-Pi exchange, adenylate kinase, and nucleoside diphosphokinase activity. Methods Enzymol. 1979;55:283–289. doi: 10.1016/0076-6879(79)55032-0. [DOI] [PubMed] [Google Scholar]
  11. Pettit F. H., Humphreys J., Reed L. J. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3945–3948. doi: 10.1073/pnas.79.13.3945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Randall D. D., Rubin P. M. Plant Pyruvate Dehydrogenase Complex: II. ATP-Dependent Inactivation and Phosphorylation. Plant Physiol. 1977 Jan;59(1):1–3. doi: 10.1104/pp.59.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Randall D. D., Williams M., Rapp B. J. Phosphorylation-dephosphorylation of pyruvate dehydrogenase complex from pea leaf mitochondria. Arch Biochem Biophys. 1981 Apr 1;207(2):437–444. doi: 10.1016/0003-9861(81)90051-5. [DOI] [PubMed] [Google Scholar]
  14. Rao K. P., Randall D. D. Plant pyruvate dehydrogenase complex: inactivation and reactivation by phosphorylation and dephosphorylation. Arch Biochem Biophys. 1980 Apr 1;200(2):461–466. doi: 10.1016/0003-9861(80)90377-x. [DOI] [PubMed] [Google Scholar]
  15. Reed L. J. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Regul. 1981;18:95–106. doi: 10.1016/b978-0-12-152818-8.50012-8. [DOI] [PubMed] [Google Scholar]
  16. Siess E. A., Wieland O. H. Regulation of pyruvate dehydrogenase interconversion in isolated hepatocytes by the mitochondrial ATP/ADP ratio. FEBS Lett. 1975 Apr 1;52(2):226–230. doi: 10.1016/0014-5793(75)80811-8. [DOI] [PubMed] [Google Scholar]
  17. Stadtman E. R., Chock P. B. Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of monocyclic systems. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2761–2765. doi: 10.1073/pnas.74.7.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor S. I., Mukherjee C., Jungas R. L. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J Biol Chem. 1975 Mar 25;250(6):2028–2035. [PubMed] [Google Scholar]
  19. Thomas A. P., Diggle T. A., Denton R. M. Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J. 1986 Aug 15;238(1):83–91. doi: 10.1042/bj2380083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams M., Randall D. D. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L. Plant Physiol. 1979 Dec;64(6):1099–1103. doi: 10.1104/pp.64.6.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES