Abstract
The response of CO2 fixation to a sudden increase in ambient CO2 concentration has been investigated in intact leaf tissue from spinach (Spinacia oleracea) using a dual channel infrared gas analyzer. Simultaneous with these measurements, changes in fluorescence emission associated with a weak, modulated measuring beam were recorded. Application of brief (2-3 seconds) dark intervals enabled estimation of the dark fluorescence level (Fo) under both steady state and transient conditions. The degree of suppression of Fo level fluorescence in the light was strongly correlated with nonphotochemical quenching under all conditions. During CO2-induced oscillations in photosynthesis under 2% O2 the changes in nonphotochemical quenching anticipate changes in the rate of uptake of CO2. At such low levels of O2 and constant illumination, changes in the relative quantum efficiency of open photosystem II units were estimated as the ratio of the rate of CO2 uptake and the photochemical quenching coefficient. Under the same conditions the relative quantum efficiency of photosystem II was found to vary inversely with the degree of nonphotochemical quenching. The relationship between changes in the rate of CO2 uptake: photochemical quenching coefficient and nonphotochemical quenching was altered somewhat when the same experiment was conducted under 20% O2. The results suggest that electron transport coupled to reduction of O2 occurs to varying degrees with time during oscillations, especially when ambient O2 concentrations are high.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradbury M., Baker N. R. Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta. 1981 May 13;635(3):542–551. doi: 10.1016/0005-2728(81)90113-4. [DOI] [PubMed] [Google Scholar]
- Butler W. L., Kitajima M. Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta. 1975 Jan 31;376(1):116–125. doi: 10.1016/0005-2728(75)90210-8. [DOI] [PubMed] [Google Scholar]
- Demmig B., Winter K., Krüger A., Czygan F. C. Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 1987 Jun;84(2):218–224. doi: 10.1104/pp.84.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furbank R. T., Foyer C. H. Oscillations in levels of metabolites from the photosynthetic carbon reduction cycle in spinach leaf disks generated by the transition from air to 5% CO2. Arch Biochem Biophys. 1986 Apr;246(1):240–244. doi: 10.1016/0003-9861(86)90469-8. [DOI] [PubMed] [Google Scholar]
- Laisk A., Kiirats O., Oja V. Assimilatory Power (Postillumination CO(2) Uptake) in Leaves: Measurement, Environmental Dependencies, and Kinetic Properties. Plant Physiol. 1984 Nov;76(3):723–729. doi: 10.1104/pp.76.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Ferrandino F. J. A Numerical Approach to Measurement of CO(2) Exchange Transients by Infrared Gas Analysis. Plant Physiol. 1984 Dec;76(4):976–978. doi: 10.1104/pp.76.4.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Sivak M. N., Walker D. A. Relationship between Steady-State Fluorescence Yield and Photosynthetic Efficiency in Spinach Leaf Tissue. Plant Physiol. 1988 Sep;88(1):158–163. doi: 10.1104/pp.88.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]