Abstract
The intraorganellar distribution of superoxide dismutase (SOD) (EC 1.15.1.1) in two types of plant peroxisomes (glyoxysomes and leaf peroxisomes) was studied by determinations of SOD latency in intact organelles and by solubilization assays with 0.2 molar KCl. Glyoxysomes were purified from watermelon (Citrullus vulgaris Schrad.) cotyledons, and their integrity, calculated on the basis of glyoxysomal marker enzymes, was about 60%. Under the same conditions, the latency of SOD activity determined in glyoxysomes was 40%. The difference between glyoxysomal intactness and SOD latency was very close to the percentage of isozyme Mn-SOD previously determined in glyoxysomes (LM Sandalio, LA Del Río 1987 J Plant Physiol 127: 395-409). In matrix and membrane fractions of glyoxysomes, SOD exhibited a solubilization pattern very similar to catalase, a typical soluble enzyme of glyoxysomes. The analysis of the distribution of individual SOD isozymes in glyoxysomal fractions treated with KCl showed that Cu,Zn-SOD II, the major SOD isozyme in glyoxysomes, was present in the soluble fraction of these organelles, whereas Mn-SOD was bound to the glyoxysomal membrane. These data in conjunction with those of latency of SOD activity in intact glyoxysomes suggest that Mn-SOD is bound to the external side of the membrane of glyoxysomes. On the other hand, in intact leaf peroxisomes where only a Mn-containing SOD is present (LM Sandalio, JM Palma, LA Del Río 1987 Plant Sci 51: 1-8), this isozyme was found in the peroxisomal matrix. The physiological meaning of SOD localization in matrix and membrane fractions of glyoxysomes and the possibility of new roles for plant peroxisomes in cellular metabolism related to activated oxygen species is discussed.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1986;58:61–97. doi: 10.1002/9780470123041.ch2. [DOI] [PubMed] [Google Scholar]
- Geller B. L., Winge D. R. Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J Biol Chem. 1982 Aug 10;257(15):8945–8952. [PubMed] [Google Scholar]
- Huang A. H., Beevers H. Localization of enzymes within microbodies. J Cell Biol. 1973 Aug;58(2):379–389. doi: 10.1083/jcb.58.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang A. H. Comparative studies of glyoxysomes from various Fatty seedlings. Plant Physiol. 1975 May;55(5):870–874. doi: 10.1104/pp.55.5.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Schmitt M. R., Edwards G. E. Isolation and purification of intact peroxisomes from green leaf tissue. Plant Physiol. 1982 Oct;70(4):1213–1217. doi: 10.1104/pp.70.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwitzguebel J. P., Siegenthaler P. A. Purification of peroxisomes and mitochondria from spinach leaf by percoll gradient centrifugation. Plant Physiol. 1984 Jul;75(3):670–674. doi: 10.1104/pp.75.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
