Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Dec;88(4):1411–1417. doi: 10.1104/pp.88.4.1411

Two Isoenzymes of NADH-dependent Glutamate Synthase in Root Nodules of Phaseolus vulgaris L

Purification, Properties and Activity Changes during Nodule Development

Feng-Ling Chen 1,1, Julie V Cullimore 1
PMCID: PMC1055773  PMID: 16666475

Abstract

The specific activity of plant NADH-dependent glutamate synthase (NADH-GOGAT) in root nodules of Phaseolus vulgaris L. is over threefold higher than the specific activity of ferredoxin-dependent GOGAT. The NADH-GOGAT is composed of two distinct isoenzymes (NADH-GOGAT I and NADH-GOGAT II) which can be separated from crude nodule extracts by ion-exchange chromatography. Both NADH-GOGAT isoenzymes have been purified to apparent homogeneity and shown to be monomeric proteins with similar Mrs of about 200,000. They are both specific for NADH as reductant. An investigation of their kinetic characteristics show slight differences in their Kms for l-glutamine, 2-oxoglutarate, and NADH, and they have different pH optima, with NADH-GOGAT I exhibiting a broad pH optimum centering at pH 8.0 whereas NADH-GOGAT II has a much narrower pH optimum of 8.5. The specific activity of NADH-GOGAT in roots is about 27-fold lower than in nodules and consists almost entirely of NADH-GOGAT I. During nodulation both isoenzymes increase in activity but the major increase is due to NADH-GOGAT II which increases over a time course similar to the increase in nitrogenase activity. This isoenzyme is twice as active as NADH-GOGAT I in mature nodules. The roles and regulation of these two isoenzymes in the root nodule are discussed.

Full text

PDF
1411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergmann H., Preddie E., Verma D. P. Nodulin-35: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. EMBO J. 1983;2(12):2333–2339. doi: 10.1002/j.1460-2075.1983.tb01743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boland M. J., Benny A. G. Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. Eur J Biochem. 1977 Oct 3;79(2):355–362. doi: 10.1111/j.1432-1033.1977.tb11816.x. [DOI] [PubMed] [Google Scholar]
  3. Chiu J. Y., Shargool P. D. Importance of glutamate synthase in glutamate synthesis by soybean cell suspension cultures. Plant Physiol. 1979 Mar;63(3):409–415. doi: 10.1104/pp.63.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Reynolds P. H., Boland M. J., Blevins D. G., Schubert K. R., Randall D. D. Enzymes of amide and ureide biogenesis in developing soybean nodules. Plant Physiol. 1982 Jun;69(6):1334–1338. doi: 10.1104/pp.69.6.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Reynolds P. H., Boland M. J., Farnden K. J. Enzymes of nitrogen metabolism in legume nodules: partial purification and properties of the aspartate aminotransferases from lupine nodules. Arch Biochem Biophys. 1981 Jul;209(2):524–533. doi: 10.1016/0003-9861(81)90310-6. [DOI] [PubMed] [Google Scholar]
  7. Robertson J. G., Warburton M. P., Farnden K. J. Induction of glutamate synthase during nodule development in lupin. FEBS Lett. 1975 Jul 15;55(1):33–37. doi: 10.1016/0014-5793(75)80950-1. [DOI] [PubMed] [Google Scholar]
  8. Shelp B. J., Atkins C. A., Storer P. J., Canvin D. T. Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea (Vigna unguiculata L. Walp.). Arch Biochem Biophys. 1983 Jul 15;224(2):429–441. doi: 10.1016/0003-9861(83)90229-1. [DOI] [PubMed] [Google Scholar]
  9. Wallsgrove R. M., Lea P. J., Miflin B. J. Distribution of the Enzymes of Nitrogen Assimilation within the Pea Leaf Cell. Plant Physiol. 1979 Feb;63(2):232–236. doi: 10.1104/pp.63.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES