Abstract
Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods. We used a xanthan gum-based material, which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. We demonstrated IEB's capabilities in organ modelling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite. Further, a head phantom and a Matryoshka doll were 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Towards the use case of IEB and employing innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, we developed a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
