Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2023 Sep 25:2023.09.25.23296077. [Version 1] doi: 10.1101/2023.09.25.23296077

Divergent transcriptomic profiles in depressed individuals with hyper- and hypophagia implicating inflammatory status

Shu Dan, Julia Hall, Laura M Holsen, Torsten Klengel
PMCID: PMC10557809  PMID: 37808707

Abstract

Major Depressive Disorder (MDD) is a heterogenous and etiologically complex disease encompassing a broad spectrum of psychopathology, presumably arising from distinct pathophysiological mechanisms. Divergent appetitive phenotypes including Hyperphagic MDD (characterized by an increased appetite) and Hypophagic MDD (characterized by a decrease in appetite) are important clinical characteristics that are closely related to comorbidities, including cardiometabolic disorders. Prior evidence supports the notion that hyperphagia is associated with atypical depression, decreased stress-hormone signaling, a pro-inflammatory status, hypersomnia, and poorer clinical outcomes. Yet, our understanding of the underlying mechanisms of Hyperphagic and Hypophagic MDD is limited, and knowledge of associated biological correlates of these endophenotypes remain fragmented. We performed an exploratory study on peripheral blood RNA profiling using bulk RNAseq in unmedicated individuals with Hyperphagic and Hypophagic MDD (n=8 and n=13, respectively) and discovered individual genes and gene pathways associated with appetitive phenotypes. In addition, we used the Maastricht Acute Stress Task to uncover stress-related transcriptomic profiles in Hyper- and Hypophagic MDD.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES