Abstract
Chloroplast thylakoid protein phosphatase activity was measured using 32P-labeled histone as an exogenous substrate and an assay of the 32Pi released involving formation of a phosphomolybdate complex and organic extraction. The activity was liberated from wheat (Triticum aestivum) thylakoids by washing the membranes in NaCl-containing solutions followed by centrifugation. The liberated phosphatase activity had a pH optimum of approximately 6.75, was inhibited by addition of 10 millimolar EDTA or EGTA, and was stimulated by addition of millimolar amounts of dithiothreitol, magnesium, manganese, or calcium ions. The rate of thylakoid protein dephosphorylation was decreased following liberation of a portion of the protein phosphatase activity and was increased by addition of salt-liberated phosphatase fraction. These results suggest that at least a portion of wheat thylakoid protein phosphatase is a peripheral, rather than an integral, membrane protein.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coughlan S. J., Hind G. Protein kinases of the thylakoid membrane. J Biol Chem. 1986 Oct 25;261(30):14062–14068. [PubMed] [Google Scholar]
- Guitton C., Mache R. Phosphorylation in vitro of the large subunit of the ribulose-1,5-bisphosphate carboxylase and of the glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1987 Jul 1;166(1):249–254. doi: 10.1111/j.1432-1033.1987.tb13509.x. [DOI] [PubMed] [Google Scholar]
- Markwell J. P., Baker N. R., Bradbury M., Thornber J. P. Use of zinc ions to study thylakoid protein phosphorylation and the state 1-state 2 transition in vitro. Plant Physiol. 1984 Feb;74(2):348–354. doi: 10.1104/pp.74.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens G. C., Ohad I. Phosphorylation of chlamydomonas reinhardi chloroplast membrane proteins in vivo and in vitro. J Cell Biol. 1982 Jun;93(3):712–718. doi: 10.1083/jcb.93.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shacter E. Organic extraction of Pi with isobutanol/toluene. Anal Biochem. 1984 May 1;138(2):416–420. doi: 10.1016/0003-2697(84)90831-5. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Steinback K. E., Bose S., Kyle D. J. Phosphorylation of the light-harvesting chlorophyll-protein regulates excitation energy distribution between photosystem II and photosystem I. Arch Biochem Biophys. 1982 Jun;216(1):356–361. doi: 10.1016/0003-9861(82)90221-1. [DOI] [PubMed] [Google Scholar]
