Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Feb;89(2):421–428. doi: 10.1104/pp.89.2.421

Structure of Plant Cell Walls 1

XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides

Tadashi Ishii 1,2,3,2, Jerry Thomas 1,2,3,3, Alan Darvill 1,2,3, Peter Albersheim 1,2,3
PMCID: PMC1055857  PMID: 16666559

Abstract

Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ∼4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  2. Chambers R. E., Clamp J. R. An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochem J. 1971 Dec;125(4):1009–1018. doi: 10.1042/bj1251009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Darvill A. G., McNeil M., Albersheim P. Structure of Plant Cell Walls: VIII. A New Pectic Polysaccharide. Plant Physiol. 1978 Sep;62(3):418–422. doi: 10.1104/pp.62.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. English P. D., Maglothin A., Keegstra K., Albersheim P. A Cell Wall-degrading Endopolygalacturonase Secreted by Colletotrichum lindemuthianum. Plant Physiol. 1972 Mar;49(3):293–298. doi: 10.1104/pp.49.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  6. McNeil M., Darvill A. G., Albersheim P. Structure of Plant Cell Walls: X. RHAMNOGALACTURONAN I, A STRUCTURALLY COMPLEX PECTIC POLYSACCHARIDE IN THE WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS. Plant Physiol. 1980 Dec;66(6):1128–1134. doi: 10.1104/pp.66.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McNeil M., Darvill A. G., Fry S. C., Albersheim P. Structure and function of the primary cell walls of plants. Annu Rev Biochem. 1984;53:625–663. doi: 10.1146/annurev.bi.53.070184.003205. [DOI] [PubMed] [Google Scholar]
  8. Mort A. J., Bauer W. D. Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. Structure of the capsular and extracellular polysaccharides of Rhizobium japonicum that bind soybean lectin. J Biol Chem. 1982 Feb 25;257(4):1870–1875. [PubMed] [Google Scholar]
  9. Sandford P. A., Conrad H. E. The structure of the Aerobacter aerogenes A3(S1) polysaccharide. I. A reexamination using improved procedures for methylation analysis. Biochemistry. 1966 May;5(5):1508–1517. doi: 10.1021/bi00869a009. [DOI] [PubMed] [Google Scholar]
  10. Selvendran R. R. Developments in the chemistry and biochemistry of pectic and hemicellulosic polymers. J Cell Sci Suppl. 1985;2:51–88. doi: 10.1242/jcs.1985.supplement_2.4. [DOI] [PubMed] [Google Scholar]
  11. Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thomas J. R., McNeil M., Darvill A. G., Albersheim P. Structure of Plant Cell Walls : XIX. Isolation and Characterization of Wall Polysaccharides from Suspension-Cultured Douglas Fir Cells. Plant Physiol. 1987 Mar;83(3):659–671. doi: 10.1104/pp.83.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES