Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Mar;89(3):852–859. doi: 10.1104/pp.89.3.852

Biosynthesis of Tetrapyrrole Pigment Precursors 1

Pyridoxal Requirement of the Aminotransferase Step in the Formation of δ-Aminolevulinate from Glutamate in Extracts of Chlorella vulgaris

Yael J Avissar 1, Samuel I Beale 1
PMCID: PMC1055933  PMID: 16666632

Abstract

The aminotransferase that catalyzes the formation of δ-aminolevulinic acid from glutamate-1-semialdehyde or from glutamate in a reconstituted enzyme system was isolated and partially purified from Chlorella vulgaris. The apparent molecular weight of the aminotransferase was determined by Sephadex G-100 and Ultrogel AcA 54 gel filtration to be 60,000 ± 5,000. Catalytic activity of the aminotransferase required pyrixodal phosphate (PALP). The cofactor could not be removed by gel filtration after exposure of the enzyme to PALP. Aminotransferase was inhibited by gabaculine (3-amino-2,3-dihydrobenzoic acid). The concentration of gabaculine required for half maximal inhibition was about 0.05 micromolar. Aminotransferase activity could be regained upon the removal of gabaculine by gel filtration and supplementing the assay medium with PALP. Neither the inhibitory action of gabaculine nor its reversibility was affected by preincubation of the enzyme with the keto acids levulinate and δ-aminolevulinic acid.

Full text

PDF
852

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avissar Y. J., Beale S. I. Biosynthesis of Tetrapyrrole Pigment Precursors : Formation and Utilization of Glutamyl-tRNA for delta-Aminolevulinic Acid Synthesis by Isolated Enzyme Fractions from Chlorella Vulgaris. Plant Physiol. 1988 Nov;88(3):879–886. doi: 10.1104/pp.88.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Hoober J. K., Kahn A., Ash D. E., Gough S., Kannangara C. G. Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun. 1988;53(1):11–25. doi: 10.1007/BF02908411. [DOI] [PubMed] [Google Scholar]
  4. Kannangara C. G., Gough S. P., Bruyant P., Hoober J. K., Kahn A., von Wettstein D. tRNA(Glu) as a cofactor in delta-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci. 1988 Apr;13(4):139–143. doi: 10.1016/0968-0004(88)90071-0. [DOI] [PubMed] [Google Scholar]
  5. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  6. Mau Y. H., Wang W. Y. Biosynthesis of delta-Aminolevulinic Acid in Chlamydomonas reinhardtii: Study of the Transamination Mechanism Using Specifically Labeled Glutamate. Plant Physiol. 1988 Mar;86(3):793–797. doi: 10.1104/pp.86.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rando R. R., Bangerter F. W. The irreversible inhibition of mouse brain gamma-aminobutyric acid (GABA)-alpha-ketoglutaric acid transaminase by gabaculine. J Am Chem Soc. 1976 Oct 13;98(21):6762–6764. doi: 10.1021/ja00437a090. [DOI] [PubMed] [Google Scholar]
  8. Rando R. R. Mechanism of the irreversible inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase by the neutrotoxin gabaculine. Biochemistry. 1977 Oct 18;16(21):4604–4610. doi: 10.1021/bi00640a012. [DOI] [PubMed] [Google Scholar]
  9. Schneegurt M. A., Beale S. I. Characterization of the RNA Required for Biosynthesis of delta-Aminolevulinic Acid from Glutamate : Purification by Anticodon-Based Affinity Chromatography and Determination That the UUC Glutamate Anticodon Is a General Requirement for Function in ALA Biosynthesis. Plant Physiol. 1988 Feb;86(2):497–504. doi: 10.1104/pp.86.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Soper T. S., Manning J. M. Inactivation of pyridoxal phosphate enzymes by gabaculine. Correlation with enzymic exchange of beta-protons. J Biol Chem. 1982 Dec 10;257(23):13930–13936. [PubMed] [Google Scholar]
  11. URATA G., GRANICK S. Biosynthesis of alpha-aminoketones and the metabolism of aminoacetone. J Biol Chem. 1963 Feb;238:811–820. [PubMed] [Google Scholar]
  12. Wang W. Y., Huang D. D., Stachon D., Gough S. P., Kannangara C. G. Purification, Characterization, and Fractionation of the delta-Aminolevulinic Acid Synthesizing Enzymes from Light-Grown Chlamydomonas reinhardtii Cells. Plant Physiol. 1984 Mar;74(3):569–575. doi: 10.1104/pp.74.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Weinstein J. D., Beale S. I. Enzymatic conversion of glutamate to delta-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys. 1985 Mar;237(2):454–464. doi: 10.1016/0003-9861(85)90299-1. [DOI] [PubMed] [Google Scholar]
  14. Weinstein J. D., Mayer S. M., Beale S. I. Formation of delta-Aminolevulinic Acid from Glutamic Acid in Algal Extracts : Separation into an RNA and Three Required Enzyme Components by Serial Affinity Chromatography. Plant Physiol. 1987 Jun;84(2):244–250. doi: 10.1104/pp.84.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES