Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Apr;89(4):1085–1087. doi: 10.1104/pp.89.4.1085

Growth Retardant-Induced Changes in Phototropic Reaction of Vigna radiata Seedlings 1

R Konjević 1, D Grubišić 1, Mirjana Nešković 1
PMCID: PMC1055979  PMID: 16666668

Abstract

The effect of growth retardants on phototropism has been studied in mung bean (Vigna radiata) seedlings. Ancymidol, tetcyclacis, and paclobutrazol inhibited phototropism while AMO 1618 and CCC were ineffective. The fluence-response relationships for phototropism of etiolated seedlings were similar to those previously described for monocots and other dicots. Ancymidol caused a shift in the maximum phototropic response to higher fluence of light. It is suggested that ancymidol may affect phototropism through an effect on the photoreceptor system.

Full text

PDF
1085

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brain R. D., Freeberg J. A., Weiss C. V., Briggs W. R. Blue light-induced Absorbance Changes in Membrane Fractions from Corn and Neurospora. Plant Physiol. 1977 May;59(5):948–952. doi: 10.1104/pp.59.5.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coolbaugh R. C., Hamilton R. Inhibition of ent-Kaurene Oxidation and Growth by alpha-Cyclopropyl-alpha-(p-methoxyphenyl)-5-pyrimidine Methyl Alcohol. Plant Physiol. 1976 Feb;57(2):245–248. doi: 10.1104/pp.57.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coolbaugh R. C., Hirano S. S., West C. A. Studies on the Specificity and Site of Action of alpha-Cyclopropyl-alpha-[p-methoxyphenyl]-5-pyrimidine Methyl Alcohol (Ancymidol), a Plant Growth Regulator. Plant Physiol. 1978 Oct;62(4):571–576. doi: 10.1104/pp.62.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dennis D. T., Upper C. D., West C. A. An enzymic site of inhibition of gibberellin biosynthesis by Amo 1618 and other plant growth retardants. Plant Physiol. 1965 Sep;40(5):948–952. doi: 10.1104/pp.40.5.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellis R. J. Comparison of fluence-response relationships of phototropism in light- and dark-grown buckwheat. Plant Physiol. 1987 Nov;85(3):689–692. doi: 10.1104/pp.85.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fall R. R., West C. A. Purification and properties of kaurene synthetase from Fusarium moniliforme. J Biol Chem. 1971 Nov 25;246(22):6913–6928. [PubMed] [Google Scholar]
  7. Frost R. G., West C. A. Properties of Kaurene Synthetase from Marah macrocarpus. Plant Physiol. 1977 Jan;59(1):22–29. doi: 10.1104/pp.59.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leong T. Y., Briggs W. R. Evidence from studies with acifluorfen for participation of a flavin-cytochrome complex in blue light photoreception for phototropism of oat coleoptiles. Plant Physiol. 1982 Sep;70(3):875–881. doi: 10.1104/pp.70.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leong T. Y., Briggs W. R. Partial purification and characterization of a blue light-sensitive cytochrome-flavin complex from corn membranes. Plant Physiol. 1981 May;67(5):1042–1046. doi: 10.1104/pp.67.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Poff K. L., Butler W. L. Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum. Nature. 1974 Apr 26;248(5451):799–801. doi: 10.1038/248799a0. [DOI] [PubMed] [Google Scholar]
  11. Poff K. L., Butler W. L. Spectral Characterization of the Photoreducible b-Type Cytochrome of Dictyostelium discoideum. Plant Physiol. 1975 Feb;55(2):427–429. doi: 10.1104/pp.55.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES