Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Apr;89(4):1306–1310. doi: 10.1104/pp.89.4.1306

A Role for Ethylene in the Metabolism of Cyanide by Higher Plants 1

J Stephen Goudey 1, Forrest L Tittle 1, Mary S Spencer 1
PMCID: PMC1056013  PMID: 16666701

Abstract

The action of ethylene on the capacity of plant tissues to metabolize cyanide to β-cyanoalanine was examined. Beta-cyanoalanine synthase (EC 4.4.1.9) catalyzes the reaction between cyanide and cysteine to form β-cyanoalanine and hydrogen sulfide. Levels of β-cyanoalanine synthase activity in tissues of 6 day old etiolated pea (Pisum sativum) seedlings were enhanced severalfold by 1 microliter per liter ethylene. The promotive effect of ethylene increased with increasing ethylene concentrations from 0.01 to 100 microliters per liter and with the period of exposure from 3 to 24 hours. Ethylene enhanced β-cyanoalanine synthase activity in all regions of the seedling (shoots and roots, internodal regions, cotyledons). The promotive effect was eliminated by norbornadiene, a competitive inhibitor of ethylene action. Levels of β-cyanoalanine synthase in seedlings of four other dicots (Phaseolus aureas, Glycine max, Lactuca sativa, Sinapis arvensis) and two monocots (Hordeum vulgares, Triticum aestivum) were also increased in response to ethylene. Our results suggest an important regulatory role for ethylene in the metabolism of cyanide by higher plants.

Full text

PDF
1306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akopyan T. N., Braunstein A. E., Goryachenkova E. V. Beta-cyanoalanine synthase: purification and characterization. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1617–1621. doi: 10.1073/pnas.72.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumenthal S. G., Hendrickson H. R., Abrol Y. P., Conn E. E. Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J Biol Chem. 1968 Oct 25;243(20):5302–5307. [PubMed] [Google Scholar]
  3. Castric P. A., Farnden K. J., Conn E. E. Cyanide metabolism in higher plants. V. The formation of asparagine from -cyanoalanine. Arch Biochem Biophys. 1972 Sep;152(1):62–69. doi: 10.1016/0003-9861(72)90193-2. [DOI] [PubMed] [Google Scholar]
  4. Eastwell K. C., Bassi P. K., Spencer M. E. Comparison and evaluation methods for the removal of ethylene and other hydrocarbons from air for biological studies. Plant Physiol. 1978 Nov;62(5):723–726. doi: 10.1104/pp.62.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hendrickson H. R., Conn E. E. Cyanide metabolism in higher plants. IV. Purification and properties of the beta-cyanolanine synthase of blue lupine. J Biol Chem. 1969 May 25;244(10):2632–2640. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Miller J. M., Conn E. E. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 1980 Jun;65(6):1199–1202. doi: 10.1104/pp.65.6.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peiser G. D., Wang T. T., Hoffman N. E., Yang S. F., Liu H. W., Walsh C. T. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci U S A. 1984 May;81(10):3059–3063. doi: 10.1073/pnas.81.10.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
  10. Solomos T., Laties G. G. Effects of Cyanide and Ethylene on the Respiration of Cyanide-sensitive and Cyanide-resistant Plant Tissues. Plant Physiol. 1976 Jul;58(1):47–50. doi: 10.1104/pp.58.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Solomos T., Laties G. G. The mechanism of ethylene and cyanide action in triggering the rise in respiration in potato tubers. Plant Physiol. 1975 Jan;55(1):73–78. doi: 10.1104/pp.55.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wilson D. F., Erecińska M. Ligands of cytochrome c oxidase. Methods Enzymol. 1978;53:191–201. doi: 10.1016/s0076-6879(78)53024-3. [DOI] [PubMed] [Google Scholar]
  13. Wurtele E. S., Nikolau B. J., Conn E. E. Subcellular and Developmental Distribution of beta-Cyanoalanine Synthase in Barley Leaves. Plant Physiol. 1985 Jun;78(2):285–290. doi: 10.1104/pp.78.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wurtele E. S., Nikolau B. J., Conn E. E. Tissue Distribution of beta-Cyanoalanine Synthase in Leaves. Plant Physiol. 1984 Aug;75(4):979–982. doi: 10.1104/pp.75.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES