Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Sep;82(1):7–10. doi: 10.1104/pp.82.1.7

Sucrose Synthase Activity in Developing Wheat Endosperms Differing in Maximum Weight 1

Elizabeth MacDowell Dale 1, Thomas Lee Housley 1
PMCID: PMC1056057  PMID: 16665025

Abstract

Past research on kernel growth in wheat (Triticum aestivum) has shown that the kernel itself largely regulates the influx of sucrose for consequent starch synthesis in the endosperm of the grain. The first step in the conversion of sucrose to starch is catalyzed by sucrose synthase (EC 2.4.13). Sucrose synthase activity was assayed in developing endosperms from kernels differing in growth rate and in maximum dry weight accumulation. From 10 to 22 days after anthesis, sucrose synthase activity per wheat endosperm remained constant with respect to time in all grains. However, kernels which had higher rates of kernel growth and which achieved greatest maximum weight had consistently and significantly higher sucrose synthase activities at any point in time than did kernels with slower rates of dry matter accumulation and lower maximum weight. In addition, larger kernels had a significantly greater amount of water in which this activity could be expressed. Although the results do not implicate sucrose synthase as the “rate limiting” enzyme in wheat kernel growth, they do emphasize the importance of sucrose synthase activity in larger or more rapidly growing kernels, as compared to smaller slower growing kernels.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Perez C. M., Perdon A. A., Resurreccion A. P., Villareal R. M., Juliano B. O. Enzymes of carbohydrate metabolism in the developing rice grain. Plant Physiol. 1975 Nov;56(5):579–583. doi: 10.1104/pp.56.5.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Tsai C. Y., Salamini F., Nelson O. E. Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 1970 Aug;46(2):299–306. doi: 10.1104/pp.46.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES