Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Sep;82(1):285–288. doi: 10.1104/pp.82.1.285

Regeneration of Magnesium-2,4-Divinylpheoporphyrin a5 (Divinyl Protochlorophyllide) in Isolated Developing Chloroplasts 1

Laiqiang Huang 1, Paul A Castelfranco 1
PMCID: PMC1056104  PMID: 16665008

Abstract

A preparation of developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons was found capable of synthesizing divinyl protochlorophyllide (magnesium-2,4-divinylpheoporphyrin a5) in the presence of glutamate, adenosine triphosphate, reducing power, S-adenosyl-l-methionine, and molecular oxygen. Both adenosine triphosphate and molecular oxygen were absolutely required while each of the other three was strongly promotive. Organelle intactness was essential. The divinyl protochlorophyllide (Pchlide) formed in vitro could be completely phototransformed. Regeneration of Pchlide was not inhibited by 0.3 millimolar chloramphenicol. The initial in vitro rate of Pchlide regeneration was considerably higher than the rate of Pchlide synthesis observed when greened cucumber seedlings were returned to darkness. However, Pchlide synthesis in vitro fell off exponentially with a half-life of approximately 21 minutes, whereas Pchlide synthesis in vivo was linear for at least 100 minutes. It is likely that the leveling off of the in vitro rate is due to the loss of chloroplast integrity during the incubation, because neither adding more cofactors, nor phototransforming the accumulated Pchlide in the middle of the incubation period, restored the high initial rate of Pchlide synthesis.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):291–296. doi: 10.1104/pp.53.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belanger F. C., Rebeiz C. A. Chloroplast biogenesis, XXVII. Detection of novel chlorophyll and chlorophyll precursors in higher plants. Biochem Biophys Res Commun. 1979 May 28;88(2):365–371. doi: 10.1016/0006-291x(79)92057-6. [DOI] [PubMed] [Google Scholar]
  3. Belanger F. C., Rebeiz C. A. Chloroplast biogenesis. Detection of divinyl protochlorophyllide in higher plants. J Biol Chem. 1980 Feb 25;255(4):1266–1272. [PubMed] [Google Scholar]
  4. Bhaya D., Castelfranco P. A. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5370–5374. doi: 10.1073/pnas.82.16.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
  6. Chereskin B. M., Castelfranco P. A., Dallas J. L., Straub K. M. Mg-2,4-divinyl pheoporphyrin a5: the product of a reaction catalyzed in vitro by developing chloroplasts. Arch Biochem Biophys. 1983 Oct 1;226(1):10–18. doi: 10.1016/0003-9861(83)90266-7. [DOI] [PubMed] [Google Scholar]
  7. Chereskin B. M., Castelfranco P. A. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. Plant Physiol. 1982 Jan;69(1):112–116. doi: 10.1104/pp.69.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chereskin B. M., Wong Y. S., Castelfranco P. A. In Vitro Synthesis of the Chlorophyll Isocyclic Ring : Transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A(5). Plant Physiol. 1982 Oct;70(4):987–993. doi: 10.1104/pp.70.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuesler T. P., Wright L. A., Castelfranco P. A. Properties of Magnesium Chelatase in Greening Etioplasts: METAL ION SPECIFICITY AND EFFECT OF SUBSTRATE CONCENTRATIONS. Plant Physiol. 1981 Feb;67(2):246–249. doi: 10.1104/pp.67.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fufsler T. P., Castelfranco P. A., Wong Y. S. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts. Plant Physiol. 1984 Apr;74(4):928–933. doi: 10.1104/pp.74.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jeffrey S. W. Preparation and some properties of crystalline chlorophyll c 1 and c 2 from marine algae. Biochim Biophys Acta. 1972 Aug 18;279(1):15–33. doi: 10.1016/0304-4165(72)90238-3. [DOI] [PubMed] [Google Scholar]
  12. Pardo A. D., Chereskin B. M., Castelfranco P. A., Franceschi V. R., Wezelman B. E. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. doi: 10.1104/pp.65.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Radmer R. J., Bogorad L. (Minus) S-adenosyl-L-methionine-magnesium protoporphyrin methyltransferase, an enzyme in the biosynthetic pathway of chlorophyll in Zea mays. Plant Physiol. 1967 Mar;42(3):463–465. doi: 10.1104/pp.42.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wallsgrove R. M., Lea P. J., Miflin B. J. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 1983 Apr;71(4):780–784. doi: 10.1104/pp.71.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wong Y. S., Castelfranco P. A. Resolution and Reconstitution of Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase, the Enzyme System Responsible for the Formation of the Chlorophyll Isocyclic Ring. Plant Physiol. 1984 Jul;75(3):658–661. doi: 10.1104/pp.75.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES