Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 19;79(Pt 10):920–922. doi: 10.1107/S2056989023006047

Crystal structure of a 1:1 co-crystal of quabodepistat (OPC-167832) with 2,5-di­hydroxy­benzoic acid using microcrystal electron diffraction

Nasa Sakamoto a,*, Katsuhiko Gato a
Editor: G Diaz de Delgadob
PMCID: PMC10561196  PMID: 37817959

A co-crystal of quabodepistat and 2,5-di­hydroxy­benzoic acid was obtained and the crystal structure was solved from microcrystal electron diffraction (MicroED) data.

Keywords: crystal structure; co-crystal; quabodepistat; 2,5-di­hydroxy­benzoic acid; microcrystal electron diffraction

Abstract

Quabodepistat [(5-{[(3R,4R)-1-(4-chloro-2,6-di­fluoro­phen­yl)-3,4-di­hydroxy­piperidin-4-yl]meth­oxy}-8-fluoro-3,4-di­hydro­quinolin-2(1H)-one); C21H20ClF3N2O4] and 2,5-di­hydroxy­benzoic acid (2,5DHBA; C7H6O4) were successfully co-crystallized. Given the small size of the crystals (1 × 0.2 × 0.2 µm) the structure was solved via microcrystal electron diffraction (MicroED). The C—O and C=O bond-length ratio of the carb­oxy­lic group in 2,5DHBA is 1.08 (1.34 Å/1.24 Å), suggesting that 2,5DHBA remains protonated. Therefore, the material is a co-crystal rather than a salt. The amide group of quabodepistat participates in a cyclic hydrogen bond with the carb­oxy­lic group of the 2,5DHBA. Additional hydrogen bonds involving the quabodepistat amide and hydroxyl groups result in a three-dimensional network.

1. Chemical context

Quabodepistat (OPC-167832), discovered by Otsuka Pharmaceutical Co., Ltd. as an anti-tuberculosis drug (Hariguchi et al., 2020), has a mode of action that involves inhibiting the DprE1 enzyme of M. tuberculosis. 2,5-di­hydroxy­benzoic acid (2,5DHBA) – a derivative of benzoic acid or salicylic acid – is one of the hepatic metabolites of acetyl­salicylic acid (aspirin) (Levy & Tsuchiya, 1972). In the pharmaceutical industry, crystal-engineering approaches such as co-crystallization have been useful techniques for modifying the physicochemical properties [e.g., solubility (Yoshimura et al., 2017) or tabletability (Wang et al., 2021)] of an active pharmaceutical ingredient. We obtained the quabodepistat co-crystal with 2,5DHBA by the anti-solvent crystallization method and then attempted to solve its crystal structure using a conventional X-ray diffractometer; however, the crystal size was too small (1 × 0.2 × 0.2 µm). Therefore, we used MicroED (XtaLAB Synergy-ED, Rigaku Corporation, Tokyo, Japan), which is a powerful tool to solve crystal structures when the crystal size is smaller than 1 µm (Ito et al., 2021). Here, we report the crystal structure of the 1:1 co-crystal between quabodepistat and 2,5DHBA, solved using MicroED. 1.

2. Structural commentary

Quabodepistat and 2,5DHBA co-crystallize in a 1:1 stoichiometric ratio in the monoclinic system, space group P21, with Z = 2. Unusual bond lengths and angles are expected given the low crystal quality and the current limitations of the technique. A Mogul geometry analysis (Bruno et al., 2004) indicated that the bonds C8—N7, O42—C36, F30—C28, C6—N7, O1—C2, and O41—C33, are unusual (z-score > 3). The angles O21—C16—C17, F30—C28—C23, C6—N7—C8, C9—C10—C11, O1—C14—C15, and C6—C11—C2 also have z-score values greater than 3.

All rings expected to be planar due to aromaticity (C2–C6/C11, C23–C28, and C32–C37) exhibit χ2 values (PLATON; Spek, 2020) indicating good planarity. The six-membered ring formed by C15–C17/N18/C19–C20 displays a slight chair conformation. The best plane constructed through atoms C23–C28 makes an angle of 20.9 (11)° with the best plane through C2–C6/N7/C8–C11.

3. Supra­molecular features

Inter­molecular inter­actions via hydrogen bonds are observed between quabodepistat and 2,5DHBA. One of the inter­actions is between a carb­oxy­lic group and an amide. As shown in Fig. 1, they form the common synthon: (amide of quabo­depistat) N7—H7⋯O40=C38 (carb­oxy­lic group of 2,5DHBA) and (amide of quabodepistat) C8=O12⋯H39—O39 (carb­oxy­lic group of 2,5DHBA). Moreover, the C8=O12 of the amide inter­acts with a hydroxyl group of a neighboring quabodepistat (O12⋯H22—O22), and the H22—O22 inter­acts with another hydroxyl of quabodepistat (O22⋯H21—O21). These inter­actions form a three-dimensional network (Figs. 2 and 3, Table 1). It is worth mentioning that the C—O:C=O bond-length ratio of the carb­oxy­lic group in 2,5DHBA is 1.08 (1.34 Å/1.24 Å), which suggests that protonation has not occurred for complex binding. Therefore, this material is a co-crystal instead of a salt. The compound TAK-020 has also been reported as a co-crystal with 2,5DHBA (Kimoto et al., 2020). Therein, a carb­oxy­lic group of 2,5DHBA inter­acts with an amide moiety of the triazolinone of TAK-020, which is similar to the synthon observed in the compound reported in this contribution.

Figure 1.

Figure 1

The mol­ecular structure of the quabodepistat:2,5DHBA co-crystal showing the carb­oxy­lic group and amide hydrogen bond synthon. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Inter­molecular inter­actions via hydrogen bonds in the quabodepistat:2,5DHBA co-crystal.

Figure 3.

Figure 3

Crystal packing viewed down the a axis of the quabodepistat:2,5DHBA co-crystal.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O42i 0.93 2.71 3.40 (7) 131
C9—H9B⋯O22ii 0.97 2.94 3.49 (11) 117
N7—H7⋯O40ii 1.01 1.93 2.93 (9) 169
C34—H34⋯O42iii 0.93 2.69 3.48 (7) 143
O42—H42⋯O41iv 0.82 2.48 3.23 (6) 152
O39—H39⋯O12v 0.82 1.92 2.73 (10) 169
O21—H21⋯O22vi 0.82 2.02 2.84 (18) 175
O22—H22⋯O12v 0.82 2.11 2.90 (7) 164

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

4. Database survey

A search for co-crystals with 2,5-di­hydroxy­benzoic acid (or gentisic acid) in the Cambridge Structural Database (WebCSD, accessed June 2023; Groom et al., 2016) gave a total of 55 hits. In contrast, a search for co-crystals of quabodepistat with 2,5DHBA in the SciFinder database gave a total of two hits (Sakamoto & Miyata, 2021).

5. Synthesis and crystallization

Quabodepistat was synthesized at Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan). Tetra­hydro­furan (THF) and hexane were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). 2,5DHBA was purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). Quabodepistat (5 g) and 2,5DHBA (16.9 g, stoichiometric ratio 1:10) were dissolved in 100 mL of THF. 250 mL of hexane were added while stirring. Precipitation occurred as soon as hexane was added. The THF/hexane was stirred at room temperature (approximately 298 K) for three days. After filtration, it was dried at room temperature for 24 h, then heated at 383 K for 20 h.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Two data sets were merged to obtain 93.1% data completeness to 0.9 Å resolution. Crystals were illuminated at an electron dose rate of ∼0.01 eÅ−2 s−1. Contiguous diffraction frames were collected every 0.5° from each crystal by continuously rotating the sample stage at a goniometer rotation speed of 1° s−1; the sample stage was rotated from −40° to 40° for the first crystal (crystal 1) and from −60° to 60° for the second crystal (crystal 2). The structure was refined kinematically. Refinement with SHELXL was carried out using the scattering factors for electron diffraction (Saha et al., 2022). Pseudo-merohedric twinning was identified and refined as described by Parkin (2021). For absolute structure determination, dynamical refinement is required. However, it was not performed since the absolute configuration of quabodepistat, which has two stereocenters, is known. Extinction was high because of the dynamical effects of electron diffraction (Saha et al., 2022). In spite of the presence of some unusual bond lengths and angles, no unusual inter­molecular contacts are observed. This indicates that the structural model presented is correct.

Table 2. Experimental details.

Crystal data
Chemical formula C21H20ClF3N2O4·C7H6O4
M r 610.96
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 5.6 (3), 9.6 (3), 28.2 (3)
β (°) 90.30 (9)
V3) 1516 (109)
Z 2
Radiation type Electron, λ = 0.0251 Å
Crystal size (μm) 1.0 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-ED
No. of measured, independent and observed [I > 2σ(I)] reflections 8548, 4096, 2030
R int 0.149
θmax (°) 0.8
(sin θ/λ)max−1) 0.556
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.160, 0.480, 1.08
No. of reflections 4096
No. of parameters 348
No. of restraints 537
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.15

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXD (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023006047/dj2052sup1.cif

e-79-00920-sup1.cif (311.6KB, cif)

Supporting information file. DOI: 10.1107/S2056989023006047/dj2052Isup2.cml

Deposit the raw data into Zenodo: https://doi.org/10.5281/zenodo.7156704

Deposit the raw data into CCDC: https://dx.doi.org/10.5517/ccdc.csd.cc2d19zr

CCDC reference: 2205804

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Yamano (Rigaku Corporation) for technical advice on microED. The authors also thank Dr Kawato (Otsuka Pharmaceutical Co., Ltd.) for helpful discussions of the single-crystal structure.

supplementary crystallographic information

Crystal data

C21H20ClF3N2O4·C7H6O4 F(000) = 224
Mr = 610.96 Dx = 1.338 Mg m3
Monoclinic, P21 Electron radiation, λ = 0.0251 Å
a = 5.6 (3) Å Cell parameters from 411 reflections
b = 9.6 (3) Å θ = 0.1–0.8°
c = 28.2 (3) Å µ = 0.000 mm1
β = 90.30 (9)° T = 293 K
V = 1516 (109) Å3 Thin platelets, colourless
Z = 2 1 × 0.2 × 0.2 mm

Data collection

Rigaku XtaLAB Synergy-ED diffractometer 2030 reflections with I > 2σ(I)
Radiation source: thermionic-emission electron gun Rint = 0.149
Detector resolution: 10.0 pixels mm-1 θmax = 0.8°, θmin = 0.1°
rotation scans h = −6→6
8548 measured reflections k = −10→10
4096 independent reflections l = −31→31

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.2805P)2 + 0.170P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.160 (Δ/σ)max = 0.001
wR(F2) = 0.480 Δρmax = 0.15 e Å3
S = 1.08 Δρmin = −0.15 e Å3
4096 reflections Extinction correction: 'SHELXL2018/3 (Sheldrick, 2015)', Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
348 parameters Extinction coefficient: 368 (31)
537 restraints Absolute structure: All f" are zero, so absolute structure could not be determined
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.960 (3) 0.5589 (17) 0.7945 (6) 0.070 (5)
C11 0.804 (4) 0.6700 (17) 0.7886 (5) 0.068 (4)
C6 0.660 (3) 0.7121 (17) 0.8261 (6) 0.063 (4)
C5 0.673 (3) 0.6431 (19) 0.8694 (6) 0.072 (5)
C4 0.829 (3) 0.5320 (19) 0.8752 (5) 0.075 (5)
H4 0.837583 0.485853 0.904220 0.090*
C3 0.973 (3) 0.4899 (16) 0.8378 (6) 0.073 (5)
H3 1.077324 0.415597 0.841680 0.087*
C10 0.796 (5) 0.753 (2) 0.7416 (8) 0.069 (5)
H10A 0.957975 0.785032 0.735893 0.083*
H10B 0.759602 0.686397 0.716684 0.083*
C9 0.631 (5) 0.878 (3) 0.7338 (10) 0.075 (5)
H9A 0.528342 0.859999 0.706630 0.090*
H9B 0.726751 0.959210 0.726908 0.090*
C8 0.476 (5) 0.906 (3) 0.7778 (9) 0.068 (5)
N7 0.479 (5) 0.824 (2) 0.8206 (10) 0.067 (5)
H7 0.359249 0.842859 0.846624 0.080*
C32 0.785 (2) 0.0552 (14) 0.9171 (6) 0.053 (4)
C37 0.611 (3) 0.1500 (15) 0.9033 (5) 0.054 (4)
H37 0.608891 0.184541 0.872468 0.065*
C36 0.440 (2) 0.1933 (15) 0.9357 (6) 0.057 (5)
C35 0.443 (2) 0.1417 (17) 0.9818 (6) 0.059 (5)
H35 0.327933 0.170661 1.003412 0.071*
C34 0.617 (3) 0.0469 (18) 0.9955 (5) 0.064 (5)
H34 0.619200 0.012343 1.026363 0.076*
C33 0.789 (2) 0.0036 (15) 0.9632 (6) 0.059 (4)
O40 1.128 (4) −0.085 (2) 0.8909 (11) 0.069 (6)
C15 1.307 (4) 0.340 (2) 0.7081 (11) 0.081 (5)
C38 0.975 (3) 0.005 (2) 0.8818 (8) 0.053 (4)
O42 0.251 (4) 0.291 (2) 0.9211 (10) 0.061 (6)
H42 0.156468 0.302044 0.943037 0.092*
C14 1.241 (6) 0.397 (3) 0.7565 (12) 0.082 (5)
H14A 1.151605 0.326933 0.773690 0.099*
H14B 1.386475 0.415660 0.774296 0.099*
O12 0.319 (5) 1.000 (2) 0.7774 (9) 0.075 (7)
O41 0.958 (4) −0.099 (2) 0.9792 (11) 0.076 (7)
H41 1.043887 −0.121798 0.956939 0.114*
F13 0.511 (6) 0.688 (2) 0.9048 (10) 0.079 (7)
O1 1.104 (4) 0.520 (2) 0.7540 (12) 0.077 (5)
O39 0.968 (4) 0.071 (2) 0.8400 (11) 0.066 (5)
H39 1.072100 0.039139 0.822607 0.099*
C17 1.138 (5) 0.243 (2) 0.6290 (10) 0.090 (6)
H17A 1.232176 0.158593 0.628400 0.108*
H17B 0.988301 0.225125 0.612765 0.108*
O21 0.972 (5) 0.185 (3) 0.7110 (12) 0.098 (8)
H21 0.828359 0.200591 0.711408 0.148*
C20 1.438 (5) 0.447 (2) 0.6775 (10) 0.089 (6)
H20A 1.346328 0.532911 0.678027 0.106*
H20B 1.591213 0.466927 0.692442 0.106*
O22 1.469 (3) 0.224 (2) 0.7149 (14) 0.083 (7)
H22 1.401436 0.161832 0.729667 0.125*
C16 1.087 (4) 0.283 (2) 0.6810 (9) 0.083 (5)
H16 0.976517 0.361826 0.679004 0.100*
C23 1.265 (6) 0.344 (3) 0.5511 (9) 0.131 (7)
C28 1.434 (5) 0.264 (3) 0.5280 (10) 0.150 (8)
C27 1.440 (5) 0.261 (3) 0.4787 (10) 0.164 (9)
H27 1.553704 0.206657 0.463185 0.197*
C26 1.277 (6) 0.339 (4) 0.4525 (9) 0.170 (9)
C25 1.108 (5) 0.419 (3) 0.4756 (10) 0.162 (9)
H25 0.998639 0.471406 0.458099 0.194*
C24 1.102 (5) 0.422 (3) 0.5249 (10) 0.148 (8)
Cl31 1.268 (6) 0.322 (4) 0.3905 (9) 0.215 (12)
F29 0.929 (10) 0.501 (5) 0.548 (2) 0.172 (14)
F30 1.615 (9) 0.176 (5) 0.551 (2) 0.158 (13)
C19 1.485 (4) 0.410 (3) 0.6254 (10) 0.092 (6)
H19A 1.534890 0.492210 0.608241 0.111*
H19B 1.612402 0.341921 0.623696 0.111*
N18 1.268 (5) 0.353 (3) 0.6034 (11) 0.101 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.078 (9) 0.057 (8) 0.076 (10) 0.029 (7) 0.010 (9) 0.005 (8)
C11 0.085 (9) 0.056 (8) 0.062 (9) 0.030 (7) 0.008 (8) 0.011 (7)
C6 0.087 (9) 0.043 (7) 0.059 (9) 0.034 (7) 0.009 (8) 0.015 (7)
C5 0.088 (10) 0.063 (9) 0.066 (10) 0.037 (8) 0.007 (9) 0.024 (8)
C4 0.081 (11) 0.069 (10) 0.074 (11) 0.037 (8) 0.002 (10) 0.020 (9)
C3 0.082 (11) 0.059 (9) 0.076 (11) 0.032 (9) 0.002 (10) 0.008 (8)
C10 0.089 (10) 0.058 (9) 0.060 (10) 0.031 (8) 0.009 (10) 0.011 (8)
C9 0.096 (11) 0.067 (9) 0.062 (11) 0.040 (9) 0.015 (10) 0.018 (9)
C8 0.090 (10) 0.058 (8) 0.055 (10) 0.045 (8) 0.011 (9) 0.013 (8)
N7 0.096 (10) 0.045 (8) 0.059 (10) 0.040 (8) 0.015 (9) 0.009 (7)
C32 0.051 (7) 0.050 (7) 0.057 (9) 0.005 (6) 0.002 (7) −0.002 (7)
C37 0.055 (8) 0.052 (8) 0.055 (10) 0.010 (7) 0.008 (8) −0.004 (8)
C36 0.049 (8) 0.064 (9) 0.059 (10) 0.015 (7) 0.004 (8) −0.004 (8)
C35 0.052 (9) 0.063 (9) 0.062 (10) 0.001 (7) 0.009 (9) 0.003 (9)
C34 0.064 (9) 0.063 (9) 0.064 (10) 0.000 (8) 0.004 (9) 0.012 (9)
C33 0.061 (8) 0.053 (8) 0.065 (10) −0.004 (7) 0.006 (8) 0.009 (8)
O40 0.047 (10) 0.078 (12) 0.083 (17) 0.016 (9) 0.025 (12) 0.016 (12)
C15 0.062 (8) 0.062 (8) 0.118 (11) 0.038 (7) 0.019 (9) 0.020 (8)
C38 0.044 (8) 0.053 (9) 0.063 (10) 0.001 (7) 0.001 (8) −0.008 (8)
O42 0.048 (10) 0.065 (11) 0.072 (16) 0.022 (8) 0.004 (12) −0.005 (11)
C14 0.072 (10) 0.059 (9) 0.116 (12) 0.033 (9) 0.018 (10) 0.011 (9)
O12 0.106 (15) 0.062 (11) 0.058 (15) 0.059 (11) 0.015 (13) 0.020 (11)
O41 0.087 (14) 0.055 (10) 0.087 (17) 0.001 (9) 0.013 (14) 0.024 (12)
F13 0.134 (17) 0.045 (9) 0.059 (14) 0.041 (11) 0.023 (13) 0.025 (10)
O1 0.071 (9) 0.057 (8) 0.103 (12) 0.030 (8) 0.018 (10) 0.007 (9)
O39 0.046 (10) 0.084 (12) 0.069 (13) 0.001 (10) 0.000 (11) 0.005 (11)
C17 0.075 (10) 0.072 (10) 0.124 (13) 0.041 (9) 0.019 (11) 0.018 (10)
O21 0.068 (12) 0.092 (14) 0.14 (2) 0.016 (10) 0.013 (15) 0.031 (14)
C20 0.074 (10) 0.067 (9) 0.125 (13) 0.034 (8) 0.020 (11) 0.026 (10)
O22 0.049 (10) 0.057 (10) 0.14 (2) 0.036 (9) 0.027 (13) 0.012 (12)
C16 0.062 (9) 0.065 (9) 0.122 (12) 0.039 (8) 0.019 (10) 0.018 (9)
C23 0.123 (13) 0.128 (12) 0.143 (14) 0.041 (12) 0.019 (14) 0.012 (13)
C28 0.146 (15) 0.149 (15) 0.154 (16) 0.043 (14) 0.018 (16) −0.007 (15)
C27 0.165 (16) 0.162 (16) 0.166 (18) 0.041 (15) 0.017 (18) −0.011 (17)
C26 0.174 (16) 0.168 (16) 0.168 (17) 0.040 (15) 0.015 (18) −0.007 (16)
C25 0.161 (16) 0.159 (16) 0.165 (18) 0.040 (15) 0.015 (18) 0.005 (17)
C24 0.144 (15) 0.146 (15) 0.153 (17) 0.045 (14) 0.018 (16) 0.012 (15)
Cl31 0.23 (2) 0.22 (2) 0.19 (2) 0.06 (2) 0.01 (2) −0.01 (2)
F29 0.17 (3) 0.18 (3) 0.16 (3) 0.05 (2) 0.02 (3) 0.02 (2)
F30 0.16 (2) 0.14 (2) 0.17 (3) 0.05 (2) 0.01 (3) −0.05 (2)
C19 0.078 (11) 0.072 (10) 0.127 (13) 0.041 (9) 0.025 (12) 0.030 (11)
N18 0.088 (10) 0.090 (10) 0.126 (12) 0.035 (9) 0.022 (11) 0.023 (10)

Geometric parameters (Å, º)

C2—C11 1.3900 C15—O22 1.45 (5)
C2—C3 1.3900 C15—C16 1.54 (6)
C2—O1 1.45 (4) C38—O39 1.34 (4)
C11—C6 1.3900 O42—H42 0.8200
C11—C10 1.55 (2) C14—H14A 0.9700
C6—C5 1.3900 C14—H14B 0.9700
C6—N7 1.49 (6) C14—O1 1.41 (5)
C5—C4 1.3900 O41—H41 0.8200
C5—F13 1.42 (5) O39—H39 0.8200
C4—H4 0.9300 C17—H17A 0.9700
C4—C3 1.3900 C17—H17B 0.9700
C3—H3 0.9300 C17—C16 1.54 (2)
C10—H10A 0.9700 C17—N18 1.47 (4)
C10—H10B 0.9700 O21—H21 0.8200
C10—C9 1.53 (5) O21—C16 1.42 (3)
C9—H9A 0.9700 C20—H20A 0.9700
C9—H9B 0.9700 C20—H20B 0.9700
C9—C8 1.54 (4) C20—C19 1.53 (2)
C8—N7 1.44 (4) O22—H22 0.8200
C8—O12 1.26 (5) C16—H16 0.9800
N7—H7 1.0100 C23—C28 1.3900
C32—C37 1.3900 C23—C24 1.3900
C32—C33 1.3900 C23—N18 1.47 (4)
C32—C38 1.53 (5) C28—C27 1.3900
C37—H37 0.9300 C28—F30 1.46 (7)
C37—C36 1.3900 C27—H27 0.9300
C36—C35 1.3900 C27—C26 1.3900
C36—O42 1.47 (6) C26—C25 1.3900
C35—H35 0.9300 C26—Cl31 1.75 (3)
C35—C34 1.3900 C25—H25 0.9300
C34—H34 0.9300 C25—C24 1.3900
C34—C33 1.3900 C24—F29 1.40 (7)
C33—O41 1.44 (5) C19—H19A 0.9700
O40—C38 1.24 (5) C19—H19B 0.9700
C15—C14 1.52 (4) C19—N18 1.46 (6)
C15—C20 1.54 (4)
C11—C2—C3 120.0 O40—C38—C32 124 (3)
C11—C2—O1 117 (2) O40—C38—O39 122 (2)
C3—C2—O1 123 (2) O39—C38—C32 114 (2)
C2—C11—C10 120.8 (16) C36—O42—H42 109.5
C6—C11—C2 120.0 C15—C14—H14A 108.9
C6—C11—C10 119.2 (19) C15—C14—H14B 108.9
C11—C6—N7 122 (2) H14A—C14—H14B 107.7
C5—C6—C11 120.0 O1—C14—C15 113 (3)
C5—C6—N7 117.9 (18) O1—C14—H14A 108.9
C6—C5—C4 120.0 O1—C14—H14B 108.9
C6—C5—F13 116 (2) C33—O41—H41 109.5
C4—C5—F13 124 (2) C14—O1—C2 119 (3)
C5—C4—H4 120.0 C38—O39—H39 109.5
C3—C4—C5 120.0 H17A—C17—H17B 107.9
C3—C4—H4 120.0 C16—C17—H17A 109.1
C2—C3—H3 120.0 C16—C17—H17B 109.1
C4—C3—C2 120.0 N18—C17—H17A 109.1
C4—C3—H3 120.0 N18—C17—H17B 109.1
C11—C10—H10A 106.6 N18—C17—C16 112 (2)
C11—C10—H10B 106.6 C16—O21—H21 109.5
H10A—C10—H10B 106.6 C15—C20—H20A 107.9
C9—C10—C11 123 (2) C15—C20—H20B 107.9
C9—C10—H10A 106.6 H20A—C20—H20B 107.2
C9—C10—H10B 106.6 C19—C20—C15 117 (2)
C10—C9—H9A 109.3 C19—C20—H20A 107.9
C10—C9—H9B 109.3 C19—C20—H20B 107.9
C10—C9—C8 111 (3) C15—O22—H22 109.5
H9A—C9—H9B 108.0 C15—C16—H16 105.0
C8—C9—H9A 109.3 C17—C16—C15 114 (3)
C8—C9—H9B 109.3 C17—C16—H16 105.0
N7—C8—C9 125 (2) O21—C16—C15 107 (3)
O12—C8—C9 121 (3) O21—C16—C17 119 (3)
O12—C8—N7 114 (3) O21—C16—H16 105.0
C6—N7—H7 120.4 C28—C23—C24 120.0
C8—N7—C6 119 (3) C28—C23—N18 120 (2)
C8—N7—H7 120.4 C24—C23—N18 120 (2)
C37—C32—C33 120.0 C23—C28—C27 120.0
C37—C32—C38 121 (2) C23—C28—F30 126 (3)
C33—C32—C38 119.1 (19) C27—C28—F30 114 (3)
C32—C37—H37 120.0 C28—C27—H27 120.0
C36—C37—C32 120.0 C26—C27—C28 120.0
C36—C37—H37 120.0 C26—C27—H27 120.0
C37—C36—C35 120.0 C27—C26—Cl31 119.7 (11)
C37—C36—O42 120 (3) C25—C26—C27 120.0
C35—C36—O42 119.6 (18) C25—C26—Cl31 120.1 (13)
C36—C35—H35 120.0 C26—C25—H25 120.0
C34—C35—C36 120.0 C26—C25—C24 120.0
C34—C35—H35 120.0 C24—C25—H25 120.0
C35—C34—H34 120.0 C23—C24—F29 120 (4)
C35—C34—C33 120.0 C25—C24—C23 120.0
C33—C34—H34 120.0 C25—C24—F29 120 (3)
C32—C33—O41 122.8 (19) C20—C19—H19A 109.6
C34—C33—C32 120.0 C20—C19—H19B 109.6
C34—C33—O41 117 (3) H19A—C19—H19B 108.1
C14—C15—C20 112 (3) N18—C19—C20 110 (3)
C14—C15—C16 112 (3) N18—C19—H19A 109.6
C20—C15—C16 110 (3) N18—C19—H19B 109.6
O22—C15—C14 109 (3) C17—N18—C23 116 (3)
O22—C15—C20 107 (4) C19—N18—C17 118 (3)
O22—C15—C16 107 (4) C19—N18—C23 117 (3)
C2—C11—C6—C5 0.0 C14—C15—C16—C17 172 (2)
C2—C11—C6—N7 −176 (2) C14—C15—C16—O21 −54 (3)
C2—C11—C10—C9 −179 (2) O12—C8—N7—C6 −178 (2)
C11—C2—C3—C4 0.0 F13—C5—C4—C3 176 (2)
C11—C2—O1—C14 −172 (2) O1—C2—C11—C6 179.7 (19)
C11—C6—C5—C4 0.0 O1—C2—C11—C10 −3 (2)
C11—C6—C5—F13 −177 (2) O1—C2—C3—C4 −180 (2)
C11—C6—N7—C8 −10 (3) C20—C15—C14—O1 56 (4)
C11—C10—C9—C8 −1 (4) C20—C15—C16—C17 46 (3)
C6—C11—C10—C9 −2 (4) C20—C15—C16—O21 −180 (2)
C6—C5—C4—C3 0.0 C20—C19—N18—C17 −48 (3)
C5—C6—N7—C8 174 (2) C20—C19—N18—C23 165 (2)
C5—C4—C3—C2 0.0 O22—C15—C14—O1 174 (2)
C3—C2—C11—C6 0.0 O22—C15—C20—C19 69 (3)
C3—C2—C11—C10 177 (2) O22—C15—C16—C17 −70 (3)
C3—C2—O1—C14 8 (3) O22—C15—C16—O21 65 (3)
C10—C11—C6—C5 −177 (2) C16—C15—C14—O1 −69 (4)
C10—C11—C6—N7 7 (2) C16—C15—C20—C19 −46 (3)
C10—C9—C8—N7 −2 (4) C16—C17—N18—C23 −163 (3)
C10—C9—C8—O12 −176 (3) C16—C17—N18—C19 51 (4)
C9—C8—N7—C6 7 (5) C23—C28—C27—C26 0.0
N7—C6—C5—C4 176 (2) C28—C23—C24—C25 0.0
N7—C6—C5—F13 −1 (2) C28—C23—C24—F29 178.7 (11)
C32—C37—C36—C35 0.0 C28—C23—N18—C17 −86 (5)
C32—C37—C36—O42 −178.6 (16) C28—C23—N18—C19 61 (5)
C37—C32—C33—C34 0.0 C28—C27—C26—C25 0.0
C37—C32—C33—O41 177.5 (17) C28—C27—C26—Cl31 −174 (3)
C37—C32—C38—O40 −175.6 (19) C27—C26—C25—C24 0.0
C37—C32—C38—O39 6 (2) C26—C25—C24—C23 0.0
C37—C36—C35—C34 0.0 C26—C25—C24—F29 −178.7 (11)
C36—C35—C34—C33 0.0 C24—C23—C28—C27 0.0
C35—C34—C33—C32 0.0 C24—C23—C28—F30 −179 (3)
C35—C34—C33—O41 −177.7 (17) C24—C23—N18—C17 97 (5)
C33—C32—C37—C36 0.0 C24—C23—N18—C19 −116 (4)
C33—C32—C38—O40 4 (3) Cl31—C26—C25—C24 174 (3)
C33—C32—C38—O39 −174.3 (16) F30—C28—C27—C26 179 (3)
C15—C14—O1—C2 159 (2) N18—C17—C16—C15 −49 (3)
C15—C20—C19—N18 47 (3) N18—C17—C16—O21 −177 (2)
C38—C32—C37—C36 179.5 (14) N18—C23—C28—C27 −177 (3)
C38—C32—C33—C34 −179.5 (14) N18—C23—C28—F30 4 (3)
C38—C32—C33—O41 −2 (2) N18—C23—C24—C25 177 (3)
O42—C36—C35—C34 178.6 (16) N18—C23—C24—F29 −5 (3)
C14—C15—C20—C19 −172 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O42i 0.93 2.71 3.40 (7) 131
C9—H9B···O22ii 0.97 2.94 3.49 (11) 117
N7—H7···O40ii 1.01 1.93 2.93 (9) 169
C34—H34···O42iii 0.93 2.69 3.48 (7) 143
O42—H42···O41iv 0.82 2.48 3.23 (6) 152
O39—H39···O12v 0.82 1.92 2.73 (10) 169
O21—H21···O22vi 0.82 2.02 2.84 (18) 175
O22—H22···O12v 0.82 2.11 2.90 (7) 164

Symmetry codes: (i) x+1, y, z; (ii) x−1, y+1, z; (iii) −x+1, y−1/2, −z+2; (iv) −x+1, y+1/2, −z+2; (v) x+1, y−1, z; (vi) x−1, y, z.

References

  1. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hariguchi, N., Chen, X., Hayashi, Y., Kawano, Y., Fujiwara, M., Matsuba, M., Shimizu, H., Ohba, Y., Nakamura, I., Kitamoto, R., Shinohara, T., Uematsu, Y., Ishikawa, S., Itotani, M., Haraguchi, Y., Takemura, I. & Matsumoto, M. (2020). Antimicrob. Agents Chemother. 64, e02020–19. [DOI] [PMC free article] [PubMed]
  5. Ito, S., White, F., Okunishi, E., Aoyama, Y., Yamano, A., Sato, H., Ferrara, J., Jasnowski, M. & Meyer, M. (2021). ChemRxiv. https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/612e43f042198e340e68fb89/original/structure-determination-of-small-molecule-compounds-by-an-electron-diffractometer-for-3d-ed-micro-ed.pdf
  6. Kimoto, K., Yamamoto, M., Karashima, M., Hohokabe, M., Takeda, J., Yamamoto, K. & Ikeda, Y. (2020). Crystals, 10, 211.
  7. Levy, G. & Tsuchiya, T. (1972). N. Engl. J. Med. 287, 430–432. [DOI] [PubMed]
  8. Parkin, S. R. (2021). Acta Cryst. E77, 452–465. [DOI] [PMC free article] [PubMed]
  9. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  10. Saha, A., Nia, S. & Rodríguez, J. (2022). Chem. Rev. 122, 13883–13914. [DOI] [PMC free article] [PubMed]
  11. Sakamoto, N. & Miyata, K. (2021). WO2021230198 A1 2021-11-18. https://patents. google. com/patent/WO2021230198A1/en.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  15. Wang, J., Dai, X., Lu, T. & Chen, J. (2021). Cryst. Growth Des. 21, 838–846.
  16. Yoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 550–557.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023006047/dj2052sup1.cif

e-79-00920-sup1.cif (311.6KB, cif)

Supporting information file. DOI: 10.1107/S2056989023006047/dj2052Isup2.cml

Deposit the raw data into Zenodo: https://doi.org/10.5281/zenodo.7156704

Deposit the raw data into CCDC: https://dx.doi.org/10.5517/ccdc.csd.cc2d19zr

CCDC reference: 2205804

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES