Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 8;79(Pt 10):883–889. doi: 10.1107/S2056989023007557

Crystal structure, Hirshfeld surface analysis, inter­action energy and energy framework calculations, as well as density functional theory (DFT) com­putation, of methyl 2-oxo-1-(prop-2-yn­yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

Ayoub El-Mrabet a, Amal Haoudi a, Samira Dalbouha b,c,*, Mohamed Khalid Skalli a, Tuncer Hökelek d, Frederic Capet e, Youssef Kandri Rodi a, Ahmed Mazzah f, Nada Kheira Sebbar g
Editor: M Weilh
PMCID: PMC10561202  PMID: 37817963

In the crystal of the title com­pound, C—H⋯O hydro­gen bonds link the mol­ecules, enclosing Inline graphic (10) and Inline graphic (16) ring motifs, into layers almost parallel to the bc plane. The layers are further connected by π–π stacking inter­actions.

Keywords: crystal structure, π-stacking, C—H⋯O hydro­gen bonds, di­hydro­quinoline

Abstract

In the title mol­ecule, C14H11NO3, the di­hydro­quinoline core deviates slightly from planarity, indicated by the dihedral angle of 1.07 (3)° between the two six-membered rings. In the crystal, layers of mol­ecules almost parallel to the bc plane are formed by C—H⋯O hydro­gen bonds. These are joined by π–π stacking inter­actions. A Hirshfeld surface analysis revealed that the most important contributions to the crystal packing are from H⋯H (36.0%), H⋯C/C⋯H (28.9%) and H⋯O/O⋯H (23.5%) inter­actions. The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the dispersion energy contribution. Moreover, the mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311G(d,p) level is com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Quinoline derivatives form a class of heterocyclic com­pounds that have received much attention due to their biological and pharmacological activities (Filali Baba et al., 2019; Hayani et al., 2021). They are used in the pharmaceutical industry because of their anti­microbial (Katoh et al., 2004; Abdel-Wahab et al., 2012), anti-inflammatory (Leatham et al., 1983), anti­hypertensive (Muruganantham et al., 2004), anti­biotic (Mahamoud et al., 2006), anti-HIV (Wilson et al., 1992; Strekowski et al., 1991) and corrosion inhibitive activities (Filali Baba et al., 2016a ,b ). They are also considered as an important scaffold for the development of new pharmaceutically active agents (Filali Baba et al., 2020; Bouzian et al., 2018).

In continuation of our research work devoted to the study of O-alkyl­ation and N-alkyl­ation reactions involving quinoline derivatives, we report herein the synthesis and the mol­ecular and crystal structures of methyl 2-oxo-1-(prop-2-yn­yl)-1,2-di­hydro­quinoline-4-carboxyl­ate, obtained by an alkyl­ation reaction of methyl 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate using an excess of propargyl bromide as an alkyl­ating reagent in phase transfer catalysis (PTC). Moreover, a Hirshfeld surface analysis and inter­action energy and energy framework calculations were performed. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311G(d,p) level is com­pared with the experimentally determined mol­ecular structure in the solid state. 1.

2. Structural commentary

The di­hydro­quinoline core of the title mol­ecule (Fig. 1) deviates slightly from planarity, as indicated by the dihedral angle of 1.07 (3)° between the mean planes of the A (C1–C5/N1) and B (C4–C9) rings. Atoms O1, O2, O3, C10, C13 and C14 are −0.1294 (11), 0.1907 (12), −0.2708 (15), 0.0177 (14), −0.0267 (13) and 0.0953 (23) Å from the least-squares plane of the A ring. The O2—C13 [1.3123 (17) Å] and O3—C13 [1.1955 (16) Å] distances in the ester group indicate localized single and double bonds, rather than delocalized bonding arrangements. The O2—C13—O3 bond angle [122.55 (12)°] seems to be slightly increased with respect to that present in a free acid (122.2°; Sim et al., 1955). The O2—C13—O3 bond angle may be com­pared with the corresponding value of 124.27 (17)° in di­aqua­bis­(2-bromo­benzoato-κO)bis­(nicotinamide-κN 1)zinc(II) (Hökelek et al., 2009).

Figure 1.

Figure 1

The mol­ecular structure of the title com­pound with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C—H⋯O hydro­gen bonds (Table 1) link the mol­ecules, enclosing Inline graphic (10) and Inline graphic (16) ring motifs, into layers almost parallel to the bc plane (Fig. 2). These layers are further connected by π–π stacking inter­actions between the A and B(x − 1, y, z) rings [centroid-to-centroid distance = 3.5629 (7) Å, α = 1.13° and slippage = 1.221 Å] to form a triperiodic network.

Table 1. Hydro­gen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3 0.969 (17) 2.210 (15) 2.8807 (19) 125.3 (12)
C10—H10A⋯O1 0.922 (16) 2.277 (17) 2.6961 (17) 107.1 (12)
C14—H14B⋯O1i 0.95 (2) 2.56 (2) 3.433 (2) 153.8 (18)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

A partial packing diagram, viewed down the a axis, with C—H⋯O hydro­gen bonds shown as dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title com­pound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out by using CrystalExplorer (Spackman et al., 2021). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii (Venkatesan et al., 2016). The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydro­gen-bond donors), while the red regions indicate negative electrostatic potential (hydro­gen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking inter­actions by the presence of adjacent red and blue triangles (Fig. 5). The overall two-dimensional fingerprint plot [Fig. 6(a)] and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, C⋯O/O⋯C, H⋯N/N⋯H, C⋯N/N⋯C and N⋯O/O⋯N contacts (McKinnon et al., 2007) are illustrated in Figs. 6(b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 36.0% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydro­gen content of the mol­ecule with the tip at d e = d i = 1.22 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts [Fig. 6(c)] have a 28.9% contribution to the HS, with the tips at d e + d i = 2.68 Å. The pair of the scattered points of spikes resulting in the fingerprint plot delineated into H⋯O/O⋯H contacts [Fig. 6(d)], with a 23.5% contribution to the HS, has an almost symmetric distribution of points, with the tips at d e + d i = 2.44 Å. The C⋯C contacts [Fig. 6(e)] appear as an arrow-shaped distribution of points and have a contribution of 7.0% to the HS with the tip at d e = d i = 1.69 Å. The tiny spikes of C⋯O/O⋯C contacts [Fig. 6(f)], with a 2.5% contribution to the HS, are visible at d e + d i = 3.58 Å. Finally, the H⋯N/N⋯H [Fig. 6(g)], C⋯N/N⋯C [Fig. 6(h)] and N⋯O/O⋯N [Fig. 6(i)] contacts contribute 1.4, 0.4 and 0.4%, respectively, to the HS.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title com­pound, plotted over d norm in the range from −0.1226 to 1.1991 a.u.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title com­pound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u., using the STO-3G basis set at the Hartree–Fock level of theory.

Figure 5.

Figure 5

The Hirshfeld surface of the title com­pound plotted over shape-index.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C, (f) C⋯O/O⋯C, (g) H⋯N/N⋯H, (h) C⋯N/N⋯C and (i) N⋯O/O⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H and H⋯C/C⋯H inter­actions in Figs. 7(a)–(c), respectively.

Figure 7.

Figure 7

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015).

5. Inter­action energy calculations and energy frameworks

Using CrystalExplorer (Spackman et al., 2021), the inter­molec­ular inter­action energies were calculated at the CEB3LYP/631G(d,p) energy level, where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a radius of 3.8 Å by default (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange–repulsion (E rep) energies (Turner et al., 2015), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for E ele (red cylinders), E dis (green cylinders) and E tot (blue cylinders), and are shown in Figs. 8(a)–(c). The evaluation of the electrostatic, dispersion and total energy frameworks indicates that in the title com­pound the stabilization is dominated by the dispersion energy contribution.

Figure 8.

Figure 8

The energy frameworks, viewed down the c axis, for a cluster of mol­ecules of the title com­pound, showing the (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams, where the b axis is vertical and the c axis is horizontal. The cylindrical radius is proportional to the relative strength of the corresponding energies and was adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

6. DFT calculations

The optimized structure of the title com­pound in the gas phase was com­puted on the basis of density functional theory (DFT) using the standard B3LYP functional and the 6311G(d,p) basis set (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). Comparisons of calculated bond lengths and angles with those of the experimental study are com­piled in Table 2. The frontier orbitals were also investigated, and the highest occupied mol­ecular orbital (HOMO) and lowest unoccupied mol­ecular orbital (LUMO) orbitals are depicted in Fig. 9. It can be seen that the electron density of the HOMO is mostly distributed within the quinoline moiety, while that of the LUMO is mostly distributed over the carboxylate group.

Table 2. Comparison (X-ray and DFT) of selected bond lengths and angles (Å, °).

Bonds/angles X-ray B3LYP/6-311G(d,p)
O1—C1 1.2288 (14) 1.2231
N1—C5 1.3993 (14) 1.3955
N1—C10 1.4742 (14) 1.4727
N1—C1 1.3774 (16) 1.4035
O2—C13 1.3123 (17) 1.3460
O2—C14 1.4491 (17) 1.4399
O3—C13 1.1955 (16) 1.2081
C5—C4 1.4159 (16) 1.4234
C5—C6 1.4011 (17) 1.4062
C4—C3 1.4516 (16) 1.4539
C4—C9 1.4064 (16) 1.4096
     
C5—N1—C10 120.18 (10) 120.925
C1—N1—C5 123.16 (9) 123.436
C1—N1—C10 116.52 (10) 115.623
C13—O2—C14 116.39 (12) 115.680
N1—C5—C4 120.23 (10) 120.142
N1—C5—C6 119.97 (10) 120.504
C6—C5—C4 119.80 (10) 119.355
C5—C4—C3 117.38 (10) 117.701
C9—C4—C5 118.06 (11) 118.477

Figure 9.

Figure 9

The energy band gap of the title com­pound.

Other chemistry descriptors (chemical hardness η, softness S, electronegativity χ and electrophilicity ω) derived from the conceptual DFT calculations are given in Table 3. The HOMO and LUMO are localized in the plane extending from the methyl 2-oxo-1-(prop-2-yn­yl)-1,2-di­hydro­quinoline-4-car­box­yl­­ate ring. The energy band gap [ΔE = E LUMOE HOMO] (Fig. 9) of the mol­ecule is about −4.0 eV, with individual frontier mol­ecular orbital energies, E HOMO and E LUMO, of −6.35 and −2.35 eV, respectively.

Table 3. Calculated energies for com­pound (I).

Total energy, TE (eV) −22331.1678
E HOMO (eV) –6,35
E LUMO (eV) –2.35
Gap, ΔE (eV) –4.0
Dipole moment, μ (Debye) 2.1062
Ionization potential, I (eV) 6.35
Electron affinity, A 2.35
Electronegativity, χ 4.35
Hardness, η 2
Electrophilicity index, ω 4.73
Softness, σ 0.5
Fraction of electron transferred, ΔN 0.66

7. Database survey

A search of the Cambridge Structural Database (CSD, updated 20 March 2023; Groom et al., 2016) using fragment (II) (Fig. 10) returned 20 hits, 16 of which contained an ester group attached to C7 (the rest contained an alkyl group at this position) and, only two of them, with refcodes ROKCIG (Filali Baba et al., 2019) and REYREV (Filali Baba et al., 2017), contain halogen atoms attached to aromatic rings. The former is more closely related to the title mol­ecule due to the presence of an ethyl group on the nitro­gen and ester substituents. Unlike the title mol­ecule, that of ROKCIG forms an inverted dimer via C—H⋯O hydro­gen bonds (instead of ribbons), with layer-by-layer connections approximately parallel to (10 Inline graphic ), but it has no C—H⋯Cl hydro­gen bonds or π–π stacking inter­actions. The halogen-free analogue of ROKCIG (ROKCOM; Filali Baba et al., 2019) uses C—H⋯O hydro­gen bonds to form mol­ecular bands along the c axis, which are connected by weak π–π inter­actions.

Figure 10.

Figure 10

The mol­ecular moiety used for the database search.

8. Refinement

Crystal, data collection and refinement details are presented in Table 4. H atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. Two reflections obscured by the beamstop were omitted from the final refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C14H11NO3
M r 241.24
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 4.7033 (2), 11.1113 (6), 11.3876 (5)
α, β, γ (°) 81.759 (2), 83.356 (2), 85.564 (2)
V3) 583.89 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker DUO PHOTON III
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.708, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45341, 3559, 2489
R int 0.045
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.148, 1.11
No. of reflections 3559
No. of parameters 207
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.38, −0.28

Computer programs: APEX3 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

9. Synthesis and crystallization

To a solution of methyl 2-oxo-1,2-di­hydro­quinoline-4-car­box­yl­ate (4.47 mmol) in 10 ml of di­methyl­formamide (DMF) were added propargyl bromide (9.83 mmol), K2CO3 (22.36 mmol) and tetra-n-butyl­ammonium bromide (TBAB; 0.5 mmol). The reaction mixture was stirred at room tem­per­a­ture in DMF for 6 h. After removal of the formed salts, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. A pure com­pound was obtained after recrystallization from di­chloro­methane/hexane (2:3 v/v).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023007557/wm5688sup1.cif

e-79-00883-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007557/wm5688Isup2.hkl

e-79-00883-Isup2.hkl (283.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007557/wm5688Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989023007557/wm5688Isup4.cdx

CCDC reference: 2291603

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TH is grateful to Hacettepe University Scientific Research Project Unit.

supplementary crystallographic information

Crystal data

C14H11NO3 Z = 2
Mr = 241.24 F(000) = 252
Triclinic, P1 Dx = 1.372 Mg m3
a = 4.7033 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.1113 (6) Å Cell parameters from 9957 reflections
c = 11.3876 (5) Å θ = 2.4–30.2°
α = 81.759 (2)° µ = 0.10 mm1
β = 83.356 (2)° T = 296 K
γ = 85.564 (2)° Block, colourless
V = 583.89 (5) Å3 0.24 × 0.14 × 0.11 mm

Data collection

Bruker DUO PHOTON III diffractometer Rint = 0.045
Radiation source: microfocus sealed X-ray tube θmax = 30.5°, θmin = 1.8°
φ and ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −15→15
Tmin = 0.708, Tmax = 0.746 l = −16→16
45341 measured reflections 3 standard reflections every 1000 reflections
3559 independent reflections intensity decay: 1%
2489 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.148 All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.064P] where P = (Fo2 + 2Fc2)/3
3559 reflections (Δ/σ)max < 0.001
207 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3589 (2) 0.16022 (9) 0.53718 (9) 0.0571 (3)
N1 0.6716 (2) 0.14916 (9) 0.67741 (9) 0.0381 (2)
O2 0.2219 (3) 0.56421 (9) 0.64710 (10) 0.0655 (3)
O3 0.3962 (3) 0.56270 (10) 0.81846 (12) 0.0812 (4)
C5 0.7779 (2) 0.19819 (10) 0.76892 (10) 0.0359 (2)
C4 0.6875 (2) 0.31800 (10) 0.79156 (10) 0.0357 (2)
C3 0.4848 (3) 0.38599 (10) 0.71625 (10) 0.0372 (3)
C10 0.7636 (3) 0.02397 (11) 0.65470 (13) 0.0441 (3)
C13 0.3695 (3) 0.51328 (11) 0.73414 (12) 0.0434 (3)
C11 0.6261 (3) −0.06721 (11) 0.74351 (13) 0.0463 (3)
C6 0.9724 (3) 0.12821 (12) 0.83921 (12) 0.0439 (3)
C1 0.4663 (3) 0.20952 (11) 0.60989 (11) 0.0411 (3)
C2 0.3857 (3) 0.33419 (11) 0.63055 (11) 0.0422 (3)
C9 0.8005 (3) 0.36311 (12) 0.88452 (12) 0.0438 (3)
C8 0.9935 (3) 0.29352 (14) 0.95173 (12) 0.0500 (3)
C7 1.0789 (3) 0.17610 (14) 0.92919 (13) 0.0497 (3)
C12 0.5140 (4) −0.14126 (14) 0.81495 (17) 0.0605 (4)
C14 0.0863 (5) 0.68407 (15) 0.6591 (2) 0.0686 (5)
H10A 0.720 (4) 0.0174 (14) 0.5791 (15) 0.053 (4)*
H9 0.736 (3) 0.4439 (15) 0.9029 (14) 0.054 (4)*
H10B 0.974 (3) 0.0129 (13) 0.6502 (12) 0.044 (4)*
H6 1.030 (3) 0.0475 (15) 0.8245 (14) 0.052 (4)*
H2 0.247 (4) 0.3772 (15) 0.5795 (15) 0.056 (4)*
H8 1.067 (4) 0.3254 (16) 1.0161 (17) 0.070 (5)*
H7 1.214 (4) 0.1274 (17) 0.9743 (16) 0.066 (5)*
H14A 0.232 (6) 0.741 (2) 0.657 (2) 0.111 (8)*
H14B −0.011 (5) 0.7061 (19) 0.590 (2) 0.083 (6)*
H14C −0.036 (6) 0.684 (2) 0.729 (2) 0.100 (8)*
H12 0.435 (5) −0.201 (2) 0.874 (2) 0.091 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0699 (7) 0.0505 (6) 0.0589 (6) 0.0021 (5) −0.0237 (5) −0.0248 (5)
N1 0.0416 (5) 0.0328 (5) 0.0416 (5) 0.0006 (4) −0.0036 (4) −0.0131 (4)
O2 0.0899 (8) 0.0451 (6) 0.0658 (7) 0.0234 (5) −0.0303 (6) −0.0185 (5)
O3 0.1245 (11) 0.0485 (6) 0.0815 (8) 0.0261 (6) −0.0469 (8) −0.0339 (6)
C5 0.0346 (5) 0.0359 (6) 0.0379 (6) −0.0031 (4) −0.0010 (4) −0.0092 (4)
C4 0.0357 (5) 0.0355 (6) 0.0367 (5) −0.0027 (4) −0.0009 (4) −0.0097 (4)
C3 0.0401 (6) 0.0323 (5) 0.0395 (6) −0.0015 (4) −0.0015 (4) −0.0083 (4)
C10 0.0468 (7) 0.0369 (6) 0.0508 (7) 0.0033 (5) −0.0026 (5) −0.0189 (5)
C13 0.0488 (7) 0.0337 (6) 0.0488 (7) −0.0004 (5) −0.0053 (5) −0.0097 (5)
C11 0.0466 (7) 0.0352 (6) 0.0607 (8) 0.0035 (5) −0.0097 (6) −0.0185 (6)
C6 0.0423 (6) 0.0402 (6) 0.0491 (7) 0.0027 (5) −0.0061 (5) −0.0075 (5)
C1 0.0461 (6) 0.0387 (6) 0.0407 (6) −0.0015 (5) −0.0056 (5) −0.0125 (5)
C2 0.0485 (7) 0.0368 (6) 0.0425 (6) 0.0022 (5) −0.0101 (5) −0.0085 (5)
C9 0.0460 (6) 0.0440 (7) 0.0447 (6) −0.0034 (5) −0.0051 (5) −0.0161 (5)
C8 0.0501 (7) 0.0602 (8) 0.0438 (7) −0.0047 (6) −0.0105 (6) −0.0154 (6)
C7 0.0454 (7) 0.0572 (8) 0.0472 (7) 0.0010 (6) −0.0119 (6) −0.0055 (6)
C12 0.0642 (9) 0.0447 (8) 0.0737 (10) −0.0063 (7) −0.0086 (8) −0.0093 (7)
C14 0.0861 (13) 0.0412 (8) 0.0810 (12) 0.0209 (8) −0.0280 (11) −0.0148 (8)

Geometric parameters (Å, º)

O1—C1 1.2288 (14) C10—H10B 0.983 (15)
N1—C5 1.3993 (14) C11—C12 1.180 (2)
N1—C10 1.4742 (14) C6—C7 1.3785 (19)
N1—C1 1.3774 (16) C6—H6 0.949 (17)
O2—C13 1.3123 (17) C1—C2 1.4524 (17)
O2—C14 1.4491 (17) C2—H2 0.977 (18)
O3—C13 1.1955 (16) C9—C8 1.3750 (19)
C5—C4 1.4159 (16) C9—H9 0.969 (17)
C5—C6 1.4011 (17) C8—C7 1.386 (2)
C4—C3 1.4516 (16) C8—H8 0.966 (19)
C4—C9 1.4064 (16) C7—H7 0.950 (19)
C3—C13 1.5081 (16) C12—H12 0.94 (2)
C3—C2 1.3449 (17) C14—H14A 0.97 (3)
C10—C11 1.457 (2) C14—H14B 0.95 (2)
C10—H10A 0.922 (16) C14—H14C 0.93 (3)
C5—N1—C10 120.18 (10) C7—C6—C5 120.28 (12)
C1—N1—C5 123.16 (9) C7—C6—H6 120.2 (9)
C1—N1—C10 116.52 (10) O1—C1—N1 121.71 (11)
C13—O2—C14 116.39 (12) O1—C1—C2 122.56 (12)
N1—C5—C4 120.23 (10) N1—C1—C2 115.73 (10)
N1—C5—C6 119.97 (10) C3—C2—C1 123.09 (11)
C6—C5—C4 119.80 (10) C3—C2—H2 121.9 (10)
C5—C4—C3 117.38 (10) C1—C2—H2 114.9 (10)
C9—C4—C5 118.06 (11) C4—C9—H9 119.0 (10)
C9—C4—C3 124.56 (11) C8—C9—C4 121.30 (12)
C4—C3—C13 121.83 (10) C8—C9—H9 119.6 (10)
C2—C3—C4 120.15 (10) C9—C8—C7 120.08 (12)
C2—C3—C13 117.97 (11) C9—C8—H8 120.2 (11)
N1—C10—H10A 106.8 (10) C7—C8—H8 119.7 (11)
N1—C10—H10B 109.5 (8) C6—C7—C8 120.47 (13)
C11—C10—N1 112.13 (10) C6—C7—H7 118.6 (11)
C11—C10—H10A 111.3 (10) C8—C7—H7 120.9 (11)
C11—C10—H10B 111.7 (8) C11—C12—H12 176.4 (14)
H10A—C10—H10B 105.1 (13) O2—C14—H14A 109.5 (16)
O2—C13—C3 111.85 (10) O2—C14—H14B 105.1 (13)
O3—C13—O2 122.55 (12) O2—C14—H14C 111.5 (16)
O3—C13—C3 125.54 (12) H14A—C14—H14B 107.6 (19)
C12—C11—C10 179.65 (16) H14A—C14—H14C 110 (2)
C5—C6—H6 119.5 (9) H14B—C14—H14C 113 (2)
O1—C1—C2—C3 174.62 (13) C10—N1—C5—C4 −179.38 (10)
N1—C5—C4—C3 −0.33 (16) C10—N1—C5—C6 0.02 (17)
N1—C5—C4—C9 179.99 (10) C10—N1—C1—O1 2.22 (18)
N1—C5—C6—C7 179.74 (11) C10—N1—C1—C2 −177.92 (10)
N1—C1—C2—C3 −5.23 (19) C13—C3—C2—C1 −175.93 (11)
C5—N1—C10—C11 75.59 (14) C6—C5—C4—C3 −179.73 (10)
C5—N1—C1—O1 −173.59 (11) C6—C5—C4—C9 0.59 (17)
C5—N1—C1—C2 6.27 (18) C1—N1—C5—C4 −3.71 (17)
C5—C4—C3—C13 178.69 (10) C1—N1—C5—C6 175.68 (11)
C5—C4—C3—C2 1.31 (17) C1—N1—C10—C11 −100.36 (13)
C5—C4—C9—C8 0.10 (19) C2—C3—C13—O2 −11.40 (17)
C5—C6—C7—C8 0.4 (2) C2—C3—C13—O3 165.96 (15)
C4—C5—C6—C7 −0.86 (19) C9—C4—C3—C13 −1.66 (18)
C4—C3—C13—O2 171.16 (11) C9—C4—C3—C2 −179.04 (12)
C4—C3—C13—O3 −11.5 (2) C9—C8—C7—C6 0.3 (2)
C4—C3—C2—C1 1.54 (19) C14—O2—C13—O3 −1.1 (2)
C4—C9—C8—C7 −0.5 (2) C14—O2—C13—C3 176.33 (15)
C3—C4—C9—C8 −179.56 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O3 0.969 (17) 2.210 (15) 2.8807 (19) 125.3 (12)
C10—H10A···O1 0.922 (16) 2.277 (17) 2.6961 (17) 107.1 (12)
C14—H14B···O1i 0.95 (2) 2.56 (2) 3.433 (2) 153.8 (18)

Symmetry code: (i) −x, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to T. Hökelek).

References

  1. Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, pp. 211–276.
  2. Baba, Y. F., Gökce, H., Rodi, Y. K., Hayani, S., Chahdi, F. O., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K. & Essassi, E. M. (2020). J. Mol. Struct. 1217, 128461.
  3. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  4. Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.
  5. Bruker (2019). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016b). Environ. Sci. 7, 2424–2434.
  8. Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K., Essassi, E. M., El-Hajjaji, F. & Hammouti, B. (2016a). Pharm. Lett. 8, 128–137.
  9. Filali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038.
  10. Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.
  11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  14. Hayani, S., Sert, Y., Baba, Y. F., Benhiba, F., Chahdi, F. O., Laraqui, F. Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Rodi, Y. K. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.
  15. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  16. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608. [DOI] [PMC free article] [PubMed]
  17. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTOA System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.
  18. Katoh, M., Matsune, R., Nagase, H. & Honda, T. (2004). Tetrahedron Lett. 45, 6221–6223.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Leatham, P. A., Bird, H. A., Wright, V., Seymour, D. & Gordon, A. (1983). J. Rheumatol. Inflamm. 6, 209–211. [PubMed]
  21. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  22. Mahamoud, A., Chevalier, J., Davin-Regli, A., Barbe, J. & Pages, J. (2006). Curr. Drug Targets, 7, 843–847. [DOI] [PubMed]
  23. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  24. Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Sim, G. A., Robertson, J. M. & Goodwin, T. H. (1955). Acta Cryst. 8, 157–164.
  28. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377–388.
  29. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  30. Strekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739–1746. [DOI] [PubMed]
  31. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  32. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  33. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  34. Wilson, W. D., Zhao, M., Patterson, S. E., Wydra, R. L., Janda, L., Strekowski, L. & Schinazi, R. F. (1992). J. Med. Chem. 2, 102–110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023007557/wm5688sup1.cif

e-79-00883-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007557/wm5688Isup2.hkl

e-79-00883-Isup2.hkl (283.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007557/wm5688Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989023007557/wm5688Isup4.cdx

CCDC reference: 2291603

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES