Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 14;79(Pt 10):916–919. doi: 10.1107/S2056989023007831

2,6-Di­bromo-3,4,5-tri­meth­oxy­benzoic acid

Florian Meurer a, Tanya Dimova b, Michael Bodensteiner a,*, Iliyan Kolev b,*
Editor: J Reibenspiesc
PMCID: PMC10561206  PMID: 37817949

The previously unknown crystal structure of 2,6-di­bromo-3,4,5-tri­meth­oxy­benzoic acid was determined employing state-of-the-art Hirshfeld atom refinement and the crystal packing was analysed using Hirshfeld surface analysis.

Keywords: crystal structure, Hirshfeld atom refinement (HAR), NoSpherA2, substituted tri­meth­oxy­benzoic acid

Abstract

The title compound, 2,6-di­bromo-3,4,5-tri­meth­oxy­benzoic acid (DBrTMBA), C10H10Br2O5, was obtained by bromination and transhalogenation of 2-iodo-3,4,5-tri­meth­oxy­benzoic acid with KBrO3. Like the previously reported 2,6-di­iodo-3,4,5-tri­meth­oxy­benzoic acid (DITMBA), the structure of the title compound features a catemeric arrangement of DBrTMBA mol­ecules along an endless chain of carb­oxy­lic H–carbonyl inter­actions. A short carbon­yl–phenyl contact hints at a possible lone pair(O)–π-hole inter­action further stabilizing the chain-like structure over a dimeric arrangement of the carb­oxy­lic acid.

1. Chemical context

Organobromine compounds are valuable precursors in organic and pharmaceutical synthesis. Their participation in homo- and cross-coupling reactions is undisputed and even preferred over the other halogen-containing compounds. In practice, many brominating agents are used for their synthesis, though few of them appear to be safe both for the user-chemist and environment. Therefore, in the present work, we present a new environmentally friendly method for the synthesis of 2,6-di­bromo-3,4,5-tri­meth­oxy­benzoic acid. Its structure is closely related to those of mono- and di­iodo-3,4,5-tri­meth­oxy­benzoic acids ITMBA and DITMBA (Kolev et al., 2021, 2023). 1.

2. Structural commentary

DBrTMBA (Fig. 1) crystallizes in the monoclinic space group P1 /n with one acid mol­ecule in the asymmetric unit (Z = 4). The carb­oxy­lic acid (O1/C7/O2) group is almost perpendicular to the geometrical C6 mean plane and at an angle of 86.7 (2)°. This derivation is exactly in the middle of the reported geometries of the catemeric DITMBA, which is closer to 90° and the reported dimeric DITMBA·toluene, which deviates more from 90° (Kolev et al., 2023).

Figure 1.

Figure 1

Labelling scheme and structure of DBrTMBA. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Different to the also related structures of mono- and di­iodo-3,4,5-tri­meth­oxy­benzoic acids ITMBA and DITMBA·toluene (Kolev et al., 2021, 2023), the title compound exhibits no dimeric structure in the solid state (Fig. 2). Instead, a hydrogen-bonded chain along the crystallographic b-axis direction between neighbouring acids is observed. Mol­ecules of DBrTMBA are arranged in a catemeric fashion along this chain of carb­oxy­lic hydrogen inter­action. The structure is thus very similar to that of solvent-free DITMBA (Kolev et al., 2023). The O1—O2 distance of the DBrTMBA inter­molecular hydrogen-bonding inter­action is 2.617 (5) Å (Table 1, Fig. 3).

Figure 2.

Figure 2

Packing of DBrTMBA along the crystallographic b-axis direction.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.98 (5) 1.68 (3) 2.617 (5) 160 (5)

Symmetry code: (i) Inline graphic .

Figure 3.

Figure 3

Syndiotactic arrangement of DBrTMBA in the crystallographic b-axis direction with O(H)—O and O–center of gravity C6 and distances in Å. Atoms that are not part of the carb­oxy­lic group are shown in stick representation for clarity.

Another inter­esting structural feature in this syndiotactic arrangement can be described as a carbonyl O2 lone pair(lp)–π (C6) contact with a distance from O2 to the center of geometry of the benzene ring of 3.030 (4) Å (Fig. 2). This contact presumably contributes to the deviation from the dimeric structure as observed in ITMBA and DITMBA· toluene (Kolev et al., 2021, 2023). In the latter, the toluene solvent mol­ecule seems to shield the C6 π system from this kind of inter­action, giving rise to a preferred dimeric structure in this solvate.

To understand the crystal packing of DBrTMBA and the contribution of these closest inter­action contacts, the software program CrystalExplorer was used for a Hirshfeld surface and inter­action analysis (Spackman et al., 2021). Fig. 4 bd show the closest contacts of the hy­droxy­lic acid group as donor/acceptor in hydrogen bonding, as well as the O(lp)–π (C6) inter­action in Fig. 4 f. The hydrogen donor/acceptor properties of the carb­oxy­lic group are visualized in the mapping of the electrostatic potential at the Hirshfeld surface (Fig. 4 e).

Figure 4.

Figure 4

Chemical scheme (a) and three different orientations (b)–(d) of the d norm Hirshfeld surface of DBrTMBA. The closest contacts and the eleoctrostatic potential [−0.077, 0.252, (e)] at the Hirshfeld surface as well as the curvature of the Hirshfeld surface (f) and overview of the nearest neighbors accompanying Table 2 (g) are depicted.

Table 2 shows the inter­action energies of DBrTMBA with the closest neighbor mol­ecules in the crystal packing (colors in Fig. 4 g). As expected, the strongest inter­molecular inter­action is exhibited over the carb­oxy­lic hydrogen contacts as well as the O(lp)–π (C6) inter­action (purple-coloured neighbors).

Table 2. Inter­action Energies (kJ mol−1) for the symmetry-generated neighbors of a mol­ecule of DBrTMBA.

Values calculated with CrystalExplorer at the B3LYP/6–31G(d,p) level of theory. el: electrostatic, pol: polarization, disp: energy-dispersive, rep: repulsion.

Color code Symmetry operation E el E pol E disp E rep E total
Red x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic −1.1 −1.0 −14.0 6.1 −10.3
Orange x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic −5.6 −0.7 −10.7 8.3 −10.7
Light green x, y, z −6.3 −1.5 −25.8 16.2 −20.2
Green x, −y, −z −3.1 −0.8 −17.3 12.9 −11.0
Cyan x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic −3.3 −0.3 −7.3 8.7 −4.7
Blue x, −y, −z −9.0 −2.0 37.6 22.1 −30.1
Purple x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic −63.4 −17.1 −28.1 80.0 −54.7
Pink x, −y, −z −1.8 −0.4 −13.8 11.4 −7.1

The fingerprint plots (Fig. 5) show the various contributions of Br⋯H, O⋯H, H⋯H and C⋯H inter­actions to the Hirshfeld surface, indicating a high contribution of Br⋯H and O⋯H inter­actions.

Figure 5.

Figure 5

Fingerprint plots of the Hirshfeld surface of DBrTMBA.

4. Database survey

Five crystal structures from other authors featuring 3,4,5-tri­meth­oxy­benzoic acid (TMBA) are known in the Cambridge Structural Database (CSD, WebCSD search July 2023; Groom et al., 2016). The structure of the parent compound, which crystallizes in space group Pc, has been reported twice (Qadeer et al., 2007, Bolte, 2011). Three other structures contain TMBA co-crystallized with other organic mol­ecules (Thomas et al., 2019; Chen et al., 2018; Zhang et al., 2021). All of them reveal co-planar arrangements of the benzene rings and hydrogen-bonding inter­actions. Furthermore, we recently reported on the previously discussed mono- and di­iodo-3,4,5-tri­meth­oxy­benzoic acids ITMBA and DITMBA (Kolev et al., 2021, 2023).

5. Synthesis and crystallization

The title compound was synthesized according to the following experimental procedure: A solution of 2-iodo-3,4,5-tri­meth­oxy­benzoic acid (0.36 mmol) in 0.2 M NaOH (0.5 mL) was added dropwise to a magnetically stirred aqueous sulfuric acid solution (3.2 M, 0.6 mL) of KBrO3 (0.72 mmol). The temperature of the reaction mixture was then raised gradually from 294 to 338 K. The resulting solution was stirred for an additional 4.0 h at 338 K and then allowed to cool slowly down (without stirring) to room temperature. The desired product, 2,6-di­bromo-3,4,5-tri­meth­oxy­benzoic acid, crystallized as long, thin needles (m.p. 417–421 K; yield: 30%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. An Hirshfeld Atom Refinement (HAR) using NoSpherA2 in Olex2 was performed to obtain non-spherical atomic form factors as well as anisotropic hydrogen atomic displacement parameters (Hirshfeld, 1977, Kleemiss et al., 2021). Orca5 (Neese et al., 2020) was used for the single-point calculations for the HAR procedure at def2-TZVP/M062X level of theory. The H—X distances were fixed to neutron distances from Allen & Bruno (2010) and refined anisotropically with displacement parameter restraints. The choice to fix the H—X distances to neutron distances was made because, even after several attempts at data collection, the data from DBrTMBA did not allow for the refinement of unrestrained hydrogen distances, but did allow for the refinement of softly restrained hydrogen atom anisotropic displacement parameters at these fixed distances.

Table 3. Experimental details.

Crystal data
Chemical formula C10H10Br2O5
M r 370.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.4047 (9), 7.1107 (3), 16.8997 (13)
β (°) 107.009 (8)
V3) 1310.54 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.19
Crystal size (mm) 0.08 × 0.06 × 0.03
 
Data collection
Diffractometer SuperNova, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.749, 0.855
No. of measured, independent and observed [I ≥ 2u(I)] reflections 18764, 3245, 2254
R int 0.084
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.123, 1.06
No. of reflections 3245
No. of parameters 218
No. of restraints 63
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 1.25, −1.48

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015), OLEX2.refine (Bourhis et al., 2015), NoSpherA2 (Kleemiss et al., 2021), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007831/jy2033sup1.cif

e-79-00916-sup1.cif (371.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007831/jy2033Isup2.hkl

e-79-00916-Isup2.hkl (127KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007831/jy2033Isup3.cml

CCDC reference: 2281408

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H10Br2O5 F(000) = 718.856
Mr = 370.00 Dx = 1.875 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.4047 (9) Å Cell parameters from 1911 reflections
b = 7.1107 (3) Å θ = 3.1–28.8°
c = 16.8997 (13) Å µ = 6.19 mm1
β = 107.009 (8)° T = 100 K
V = 1310.54 (16) Å3 Block, clear colourless
Z = 4 0.08 × 0.06 × 0.03 mm

Data collection

SuperNova, Dualflex, AtlasS2 diffractometer 3245 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 2254 reflections with I≥ 2u(I)
Mirror monochromator Rint = 0.084
Detector resolution: 5.2548 pixels mm-1 θmax = 28.3°, θmin = 3.1°
ω scans h = −17→19
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) k = −12→6
Tmin = 0.749, Tmax = 0.855 l = −28→28
18764 measured reflections

Refinement

Refinement on F2 4 constraints
Least-squares matrix: full Primary atom site location: dual
R[F2 > 2σ(F2)] = 0.053 Only H-atom displacement parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0395P)2 + 3.4625P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.0002
3245 reflections Δρmax = 1.25 e Å3
218 parameters Δρmin = −1.48 e Å3
63 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.86638 (5) 0.67372 (7) 0.45104 (4) 0.03398 (18)
Br2 0.43161 (5) 0.68854 (7) 0.17096 (3) 0.03341 (18)
O1 0.6558 (4) 0.9831 (5) 0.3032 (2) 0.0315 (9)
H1 0.692 (6) 1.0810 (6) 0.277 (4) 0.04 (2)
O2 0.7570 (4) 0.7934 (5) 0.2410 (3) 0.0384 (11)
O3 0.7246 (5) 0.3480 (5) 0.5004 (3) 0.0468 (12)
O4 0.5037 (4) 0.1913 (5) 0.4131 (3) 0.0442 (12)
O5 0.3643 (4) 0.3576 (5) 0.2669 (3) 0.0484 (13)
C4 0.6357 (4) 0.6586 (6) 0.3198 (3) 0.0200 (10)
C5 0.7054 (5) 0.5773 (7) 0.3932 (3) 0.0278 (12)
C3 0.5234 (5) 0.5822 (7) 0.2773 (4) 0.0284 (12)
C6 0.6606 (6) 0.4204 (7) 0.4262 (3) 0.0312 (13)
C2 0.4771 (5) 0.4239 (7) 0.3079 (4) 0.0319 (13)
C7 0.6884 (5) 0.8184 (7) 0.2838 (3) 0.0261 (12)
C1 0.5451 (6) 0.3442 (7) 0.3827 (4) 0.0300 (13)
C8 0.7911 (7) 0.1815 (8) 0.4937 (4) 0.0472 (17)
H00a 0.852 (3) 0.2105 (16) 0.457 (2) 0.056 (11)
H00b 0.844 (3) 0.136 (3) 0.5545 (5) 0.057 (10)
H00c 0.7277 (7) 0.0722 (18) 0.465 (2) 0.048 (10)
C10 0.3618 (7) 0.1753 (8) 0.2314 (5) 0.0523 (19)
H00d 0.2696 (10) 0.142 (3) 0.195 (2) 0.066 (11)
H00e 0.421 (3) 0.173 (2) 0.192 (2) 0.061 (11)
H00f 0.393 (4) 0.0726 (11) 0.2799 (5) 0.060 (11)
C9 0.4330 (7) 0.2341 (9) 0.4679 (5) 0.056 (2)
H00g 0.359 (2) 0.326 (5) 0.4373 (10) 0.062 (10)
H00h 0.397 (3) 0.1060 (11) 0.485 (2) 0.052 (10)
H00i 0.4904 (11) 0.302 (5) 0.5224 (12) 0.072 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0308 (3) 0.0207 (3) 0.0382 (4) 0.0033 (2) −0.0091 (2) −0.0047 (2)
Br2 0.0382 (4) 0.0181 (3) 0.0312 (3) 0.0032 (2) −0.0097 (2) −0.0045 (2)
O1 0.043 (2) 0.0208 (19) 0.038 (2) −0.0014 (17) 0.0242 (19) 0.0003 (16)
H1 0.08 (4) 0.03 (3) 0.04 (3) −0.024 (13) 0.033 (17) −0.006 (13)
O2 0.061 (3) 0.0176 (19) 0.056 (3) 0.0006 (18) 0.047 (2) 0.0001 (18)
O3 0.083 (4) 0.029 (2) 0.031 (2) 0.010 (2) 0.021 (2) 0.0072 (18)
O4 0.068 (3) 0.021 (2) 0.062 (3) 0.0039 (19) 0.048 (3) 0.0028 (19)
O5 0.027 (2) 0.026 (2) 0.089 (4) −0.0041 (17) 0.013 (2) −0.007 (2)
C4 0.023 (3) 0.015 (2) 0.025 (3) −0.0035 (19) 0.012 (2) −0.0007 (18)
C5 0.035 (3) 0.022 (3) 0.028 (3) 0.004 (2) 0.012 (2) 0.000 (2)
C3 0.026 (3) 0.019 (3) 0.040 (3) −0.002 (2) 0.009 (2) −0.002 (2)
C6 0.049 (4) 0.020 (3) 0.028 (3) 0.002 (2) 0.018 (3) 0.004 (2)
C2 0.026 (3) 0.024 (3) 0.050 (4) −0.005 (2) 0.016 (3) −0.001 (2)
C7 0.036 (3) 0.014 (2) 0.035 (3) 0.003 (2) 0.022 (2) −0.001 (2)
C1 0.043 (3) 0.015 (2) 0.040 (3) −0.001 (2) 0.026 (3) 0.003 (2)
C8 0.068 (5) 0.028 (3) 0.039 (4) 0.009 (3) 0.006 (3) 0.008 (3)
H00a 0.069 (13) 0.05 (3) 0.041 (11) 0.005 (8) 0.006 (6) 0.012 (7)
H00b 0.072 (15) 0.05 (2) 0.042 (7) 0.006 (8) 0.005 (5) 0.014 (5)
H00c 0.066 (17) 0.031 (15) 0.040 (12) 0.011 (8) 0.008 (6) 0.008 (6)
C10 0.050 (5) 0.028 (3) 0.077 (6) −0.005 (3) 0.016 (4) −0.009 (3)
H00d 0.054 (7) 0.06 (3) 0.082 (14) −0.012 (5) 0.015 (5) −0.003 (8)
H00e 0.053 (10) 0.05 (3) 0.078 (13) −0.008 (7) 0.016 (6) −0.010 (8)
H00f 0.063 (13) 0.036 (19) 0.079 (14) −0.003 (7) 0.018 (6) −0.007 (8)
C9 0.076 (6) 0.036 (4) 0.081 (6) 0.010 (3) 0.063 (5) 0.010 (4)
H00g 0.082 (12) 0.038 (11) 0.09 (2) 0.012 (5) 0.059 (8) 0.008 (6)
H00h 0.081 (17) 0.033 (9) 0.073 (19) 0.012 (6) 0.070 (8) 0.003 (6)
H00i 0.10 (2) 0.041 (12) 0.092 (12) 0.008 (6) 0.051 (8) 0.007 (6)

Geometric parameters (Å, º)

Br1—C5 1.935 (6) C5—C6 1.408 (7)
Br2—C3 1.948 (6) C3—C2 1.405 (7)
O1—C7 1.299 (6) C6—C1 1.415 (8)
O2—C7 1.224 (6) C2—C1 1.395 (8)
O3—C6 1.354 (7) C8—H00a 1.0770
O3—C8 1.429 (7) C8—H00b 1.0770
O4—C1 1.346 (6) C8—H00c 1.0770
O4—C9 1.427 (7) C10—H00d 1.0770
O5—C2 1.355 (7) C10—H00e 1.0770
O5—C10 1.425 (7) C10—H00f 1.0770
C4—C5 1.388 (7) C9—H00g 1.0770
C4—C3 1.383 (7) C9—H00h 1.0770
C4—C7 1.496 (7) C9—H00i 1.0770
C1—C2—C3 119.3 (5) C8—O3—C6 113.4 (5)
C1—C2—O5 121.0 (5) C9—O4—C1 113.8 (4)
C1—C6—C5 119.2 (5) H00a—C8—O3 109.5
C1—C6—O3 120.2 (5) H00b—C8—H00a 109.5
C10—O5—C2 115.5 (5) H00b—C8—O3 109.5
C2—C1—C6 120.1 (5) H00c—C8—H00b 109.5
C2—C1—O4 120.6 (6) H00c—C8—H00a 109.5
C2—C3—C4 120.9 (5) H00c—C8—O3 109.5
C2—C3—Br2 119.5 (4) H00d—C10—O5 109.5
C3—C2—O5 119.6 (5) H00e—C10—H00d 109.5
C3—C4—C5 120.1 (5) H00e—C10—O5 109.5
C4—C7—O2 122.1 (4) H00f—C10—H00e 109.5
C4—C7—O1 113.8 (4) H00f—C10—H00d 109.5
C4—C3—Br2 119.5 (4) H00f—C10—O5 109.5
C4—C5—Br1 121.0 (4) H00g—C9—O4 109.5
C5—C6—O3 120.5 (6) H00h—C9—H00g 109.5
C6—C1—O4 119.3 (5) H00h—C9—O4 109.5
C6—C5—C4 120.3 (5) H00i—C9—H00h 109.5
C6—C5—Br1 118.8 (4) H00i—C9—H00g 109.5
C7—C4—C3 120.5 (5) H00i—C9—O4 109.5
C7—C4—C5 119.1 (5) O2—C7—O1 124.0 (5)
C7—O1—H1 109.5
Br1—C5—C4—C3 176.9 (4) O3—C6—C5—C4 −175.7 (5)
Br1—C5—C4—C7 2.2 (5) O3—C6—C1—O4 −4.6 (6)
Br1—C5—C6—O3 5.3 (5) O3—C6—C1—C2 177.3 (5)
Br1—C5—C6—C1 −177.5 (4) O4—C1—C6—C5 178.3 (5)
Br2—C3—C4—C5 −176.2 (4) O4—C1—C2—O5 4.4 (6)
Br2—C3—C4—C7 −1.7 (5) O4—C1—C2—C3 −179.2 (5)
Br2—C3—C2—O5 −5.8 (5) O5—C2—C3—C4 176.9 (5)
Br2—C3—C2—C1 177.8 (4) O5—C2—C1—C6 −177.5 (5)
O1—C7—C4—C5 −96.1 (5) C4—C5—C6—C1 1.4 (6)
O1—C7—C4—C3 89.3 (5) C4—C3—C2—C1 0.5 (6)
O2—C7—C4—C5 83.0 (6) C5—C6—C1—C2 0.2 (6)
O2—C7—C4—C3 −91.5 (6) C3—C2—C1—C6 −1.2 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.98 (5) 1.68 (3) 2.617 (5) 160 (5)

Symmetry code: (i) −x+3/2, y+1/2, −z+1/2.

Funding Statement

Funding for this research was provided by the Institutional grant program of Medical University "Prof. Dr. Paraskev Stoyanov", Varna, "Nauka" (Project 20023).

References

  1. Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386. [DOI] [PubMed]
  2. Bolte, M. (2011). Private communication (CCDC 751630). CCDC, Cambridge, England. https://doi.org/10.5517/cct7449.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Chen, C., Zhang, K., Sun, Y., Xiang, S., Geng, Y., Liu, K. & Wang, L. (2018). J. Mol. Struct. 1170, 60–69.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  8. Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. [DOI] [PMC free article] [PubMed]
  9. Kolev, I. N., Dimova, T., Iliev, I., Rogozherov, M. & Bodensteiner, M. (2023). J. Mol. Struct. 1294, 136388.
  10. Kolev, I. N., Hadzhieva, N. B. & Rogozherov, M. I. (2021). J. Mol. Struct. 1226, 129303.
  11. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108. [DOI] [PubMed]
  12. Qadeer, G., Rama, N. H., Taş, M., Yeşilel, O. Z. & Wong, W.-Y. (2007). Acta Cryst. E63, o3456.
  13. Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.
  14. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  15. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  16. Thomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591–3597. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zhang, Y., Zhang, Y., Ye, W., Li, Z., Jin, S., Guo, M., Bai, L. & Wang, D. (2021). J. Mol. Struct. 1241, 130614.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007831/jy2033sup1.cif

e-79-00916-sup1.cif (371.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007831/jy2033Isup2.hkl

e-79-00916-Isup2.hkl (127KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007831/jy2033Isup3.cml

CCDC reference: 2281408

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES