Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 8;79(Pt 10):890–894. doi: 10.1107/S2056989023007181

Crystal structure and Hirshfeld surface analysis of 1-(2-amino-4-methyl-1,3-thia­zol-5-yl)ethan-1-one

Elnur Z Huseynov a, Mehmet Akkurt b, Ivan Brito c, Ajaya Bhattarai d,*, Rovnag M Rzayev e, Khammed A Asadov a, Abel M Maharramov a
Editor: L Van Meerveltf
PMCID: PMC10561208  PMID: 37817958

In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming Inline graphic (8) ring motifs. Dimers are connected by N—H⋯O hydrogen bonds, forming layers parallel to the (102) plane. These layers are connected by C—H⋯π and C=O⋯π inter­actions, consolidating the mol­ecular packing.

Keywords: crystal structure, thia­zole derivatives, hydrogen bonds, dimers, Hirshfeld surface analysis

Abstract

In the title compound, C6H8N2OS, all atoms except for the methyl H atoms are coplanar, with a maximum deviation of 0.026 (4) Å. In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming R 2 2(8) ring motifs. Dimers are connected by N—H⋯O hydrogen bonds, forming layers parallel to the (102) plane. Consolidating the mol­ecular packing, these layers are connected by C—H⋯π inter­actions between the center of the 1,3-thia­zole ring and the H atom of the methyl group attached to it, as well as C=O⋯π inter­actions between the center of the 1,3-thia­zole ring and the O atom of the carboxyl group. According to a Hirshfeld surface study, H⋯H (37.6%), O⋯H/H⋯O (16.8%), S⋯H/H⋯S (15.4%), N⋯H/H⋯N (13.0%) and C⋯H/H⋯C (7.6%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

Heterocyclic aromatic systems are the most important and manifold compounds in organic chemistry (Maharramov et al., 2011b ; Abdelhamid et al., 2014). Organic synthesis is developing intensely with newer aromatic heterocyclic compounds that are obtained for diverse medicinal and commercial purposes (Khalilov et al., 2021). Nowadays, applications of five- and six-membered ring heterocycles have expanded in different branches of chemistry, including sustainable chemistry (Montes et al., 2018), drug design and development (Tas et al., 2023) and materials sciences (Yin et al., 2020). The thia­zole core is the most common five-membered heteroaromatic ring system in azole heterocycles (Yadigarov et al., 2009; Khalilov, 2021). Thia­zoles have potent medicinal applications as it is an essential core scaffold present in many natural (thi­amine, penicillin) and synthetic medicinally important compounds (Chhabria et al., 2016) such as sulfazole, ritonavir, abafungin, fanetizole, meloxicam, fenti­azac, nizatidine, thia­methoxam, etc. (Fig. 1). On the other hand, there have been a variety of significant examples of thia­zole derivatives used as target products as well as synthetic inter­mediates (Akkurt et al., 2018; Kekeçmuhammed et al., 2022). 1.

Figure 1.

Figure 1

Some marketed drugs containing the thia­zole moiety.

In a continuation of our investigations of heterocyclic systems with biological activity and in the framework of ongoing structural studies (Maharramov et al., 2011a ; Askerov et al., 2020; Karimli et al., 2023), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 1-(2-amino-4-methyl-1,3-thia­zol-5-yl)ethan-1-one.

2. Structural commentary

In the title compound, Fig. 2, all atoms except for the methyl H atoms are coplanar, with a maximum deviation of 0.026 (4) Å for C6. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming Inline graphic (8) ring motifs (Bernstein et al., 1995; Table 1, Fig. 3). Dimers are connected by N—H⋯O hydrogen bonds, forming layers parallel to the (102) plane (Table 1, Fig. 4). Consolidating the mol­ecular packing, these layers are connected by C—H⋯π inter­actions between the center of the 1,3-thia­zole ring and the H atom of the methyl group attached to it, as well as C=O⋯π inter­actions between the center of the 1,3-thia­zole ring and the O atom of the carboxyl group (Table 1, Figs. 5 and 6).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the (N1/S1/C1–C3) 1,3-thia­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯N1i 0.86 2.11 2.963 (4) 175
N2—H1B⋯O1ii 0.86 2.02 2.835 (4) 158
C4—H4BCg1iii 0.96 2.89 3.603 (4) 132

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Partial view of the N—H⋯N and N—H⋯O bonds in the (102) plane of the title compound.

Figure 4.

Figure 4

View of the packing of the title compound along the b-axis.

Figure 5.

Figure 5

View of the C—H⋯π and C=O⋯π inter­actions of the title compound down the a axis.

Figure 6.

Figure 6

View of the C—H⋯π and C=O⋯π inter­actions of the title compound down the b axis.

Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The Hirshfeld surfaces were mapped over d norm in the range −0.5624 (red) to 0.9850 (blue) a.u. (Fig. 7). The inter­actions given in Table 2 play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (37.6%, Fig. 8 b). Other major contributors are O⋯H/H⋯O (16.8%, Fig. 8 c), S⋯H/H⋯S (15.4%, Fig. 8 d), N⋯H/H⋯N (13.0%, Fig. 8 e) and C⋯H/H⋯C (7.6%, Fig. 8 f) inter­actions. Other, smaller contributions are made by S⋯C/C⋯S (2.7%), C⋯O/O⋯C (2.6%), C⋯C (1.8%), N⋯C/C⋯N (1.5%), S⋯O/O⋯S (0.8%), S⋯N/N⋯S (0.1%) and O⋯N/N⋯O (0.1%) inter­actions.

Figure 7.

Figure 7

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed color scale of −0.5624 to 0.9850 a.u.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

O1⋯H4A 2.69 1 + x, y, z
O1⋯H1B 2.02 2 − x, Inline graphic  + y, Inline graphic  − z
C1⋯H4B 3.09 x, Inline graphic  − y, − Inline graphic  + z
H1A⋯N1 2.11 1 − x, 1 − y, 1 − z
N2⋯H6B 2.89 1 − x, − Inline graphic  + y, Inline graphic  − z

Figure 8.

Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N and (f) C⋯H/H⋯C inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the central five-membered ring 1,3-thia­zole yielded five compounds related to the title compound, viz. CSD refcodes IXAMAV (Kennedy et al., 2004a ), ABEGAQ (Kennedy et al., 2004b ), FEFKUY (Hazra et al., 2012), DUTZEY (Chen & Xu, 2010) and LAMQOJ (Fait et al., 2021).

In the crystal of IXAMAV, the supra­molecular network is based upon N—H⋯N hydrogen-bonded centrosymmetric dimers linked by N—H⋯O contacts. ABEGAQ forms a supra­molecular network based on N—H⋯N hydrogen-bonded centrosymmetric dimers that are linked in turn by N—H⋯O contacts. In the crystal of FEFKUY, an inter­play of O—H⋯N and C—H⋯O hydrogen bonds connects the mol­ecules to form C(6) Inline graphic (8) polymeric chains, which are further linked via weak C—H⋯O hydrogen bonds into a two-dimensional supra­molecular framework. The crystal structure of DUTZEY involves inter­molecular N—H⋯N hydrogen bonds. In the crystal of LAMQOJ, weak C—H⋯N hydrogen bonds build up a wavy layer of mol­ecules in the (011) plane. The layers are stacked in the [100] direction by weak π–π stacking inter­actions between the 1,3-thia­zole rings.

5. Synthesis and crystallization

The title compound was synthesized using a reported procedure (Donald et al., 2012), and colorless crystals were obtained upon recrystallization from an ethanol/water (3:1) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in calculated positions (C—H = 0.96 Å and N—H = 0.86 Å) and refined as riding with U iso(H) = 1.2U eq(N) for the NH2 group and 1.5U eq(C) for CH3 groups.

Table 3. Experimental details.

Crystal data
Chemical formula C6H8N2OS
M r 156.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.7445 (15), 13.498 (3), 8.010 (2)
β (°) 94.421 (7)
V3) 727.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.60 × 0.45 × 0.35
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015
T min, T max 0.649, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14701, 1492, 940
R int 0.144
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.142, 1.04
No. of reflections 1492
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.28

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007181/vm2288sup1.cif

e-79-00890-sup1.cif (445.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007181/vm2288Isup2.hkl

e-79-00890-Isup2.hkl (120.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007181/vm2288Isup3.cml

CCDC reference: 2288949

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by Baku State University, Erciyes University, Tribhuvan University and the Universidad de Antofagasta. Authors’ contributions are as follows. Conceptualization, EZH, KAA and AMM; methodology, EZH, IB and MA; investigation, EZH and IB; writing (original draft), MA and AB; writing (review and editing of the manuscript), MA and EZH; visualization, MA, RMR and IB; funding acquisition, EZH, AB and IB; resources, AB, IB and MA; supervision, MA and AMM.

supplementary crystallographic information

Crystal data

C6H8N2OS F(000) = 328
Mr = 156.20 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.7445 (15) Å Cell parameters from 2051 reflections
b = 13.498 (3) Å θ = 3.0–26.4°
c = 8.010 (2) Å µ = 0.37 mm1
β = 94.421 (7)° T = 296 K
V = 727.1 (3) Å3 Prism, colourless
Z = 4 0.60 × 0.45 × 0.35 mm

Data collection

Bruker APEXII CCD diffractometer 940 reflections with I > 2σ(I)
φ and ω scans Rint = 0.144
Absorption correction: multi-scan (SADABS; Krause et al., 2015 θmax = 26.4°, θmin = 3.0°
Tmin = 0.649, Tmax = 0.745 h = −8→8
14701 measured reflections k = −16→16
1492 independent reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4474P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1492 reflections Δρmax = 0.29 e Å3
93 parameters Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5920 (5) 0.7303 (2) 0.4486 (4) 0.0354 (8)
C2 0.7302 (5) 0.5848 (2) 0.4036 (4) 0.0356 (8)
C3 0.7583 (5) 0.7636 (2) 0.3769 (4) 0.0349 (8)
C4 0.4274 (5) 0.7905 (3) 0.5084 (5) 0.0446 (9)
H4A 0.356539 0.822440 0.414759 0.067*
H4B 0.480953 0.839710 0.585759 0.067*
H4C 0.338231 0.748209 0.563299 0.067*
C5 0.8348 (5) 0.8605 (3) 0.3393 (4) 0.0408 (9)
C6 0.7269 (6) 0.9538 (3) 0.3790 (5) 0.0567 (11)
H6A 0.718170 0.958584 0.497742 0.085*
H6B 0.595477 0.952624 0.323674 0.085*
H6C 0.798079 1.010036 0.340806 0.085*
N1 0.5761 (4) 0.62959 (19) 0.4631 (4) 0.0359 (7)
N2 0.7505 (4) 0.4865 (2) 0.4051 (4) 0.0498 (9)
H1A 0.661573 0.449933 0.445684 0.060*
H1B 0.852593 0.459698 0.365376 0.060*
S1 0.90402 (13) 0.66254 (6) 0.32437 (12) 0.0412 (3)
O1 0.9925 (4) 0.8657 (2) 0.2713 (4) 0.0571 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0349 (18) 0.0323 (17) 0.039 (2) 0.0005 (15) 0.0045 (15) −0.0011 (15)
C2 0.0348 (18) 0.0287 (16) 0.044 (2) 0.0034 (14) 0.0063 (15) 0.0031 (15)
C3 0.0343 (18) 0.0308 (17) 0.040 (2) −0.0023 (14) 0.0035 (15) 0.0009 (15)
C4 0.042 (2) 0.0320 (18) 0.061 (2) 0.0032 (16) 0.0105 (18) −0.0005 (17)
C5 0.0410 (19) 0.0351 (19) 0.046 (2) −0.0044 (15) 0.0016 (17) 0.0066 (15)
C6 0.066 (3) 0.0313 (19) 0.075 (3) 0.0012 (19) 0.015 (2) 0.0054 (19)
N1 0.0318 (14) 0.0294 (14) 0.0476 (18) −0.0007 (11) 0.0093 (13) 0.0001 (13)
N2 0.0450 (18) 0.0295 (16) 0.078 (2) 0.0006 (13) 0.0263 (17) 0.0004 (15)
S1 0.0371 (5) 0.0341 (5) 0.0547 (6) 0.0002 (4) 0.0172 (4) 0.0035 (4)
O1 0.0474 (16) 0.0460 (16) 0.080 (2) −0.0083 (12) 0.0182 (15) 0.0148 (14)

Geometric parameters (Å, º)

C1—N1 1.370 (4) C4—H4B 0.9600
C1—C3 1.375 (4) C4—H4C 0.9600
C1—C4 1.484 (5) C5—O1 1.234 (4)
C2—N1 1.322 (4) C5—C6 1.501 (5)
C2—N2 1.334 (4) C6—H6A 0.9600
C2—S1 1.730 (3) C6—H6B 0.9600
C3—C5 1.446 (5) C6—H6C 0.9600
C3—S1 1.752 (3) N2—H1A 0.8600
C4—H4A 0.9600 N2—H1B 0.8600
N1—C1—C3 115.6 (3) O1—C5—C3 118.5 (3)
N1—C1—C4 116.8 (3) O1—C5—C6 119.6 (3)
C3—C1—C4 127.6 (3) C3—C5—C6 121.9 (3)
N1—C2—N2 122.3 (3) C5—C6—H6A 109.5
N1—C2—S1 115.4 (2) C5—C6—H6B 109.5
N2—C2—S1 122.3 (2) H6A—C6—H6B 109.5
C1—C3—C5 134.3 (3) C5—C6—H6C 109.5
C1—C3—S1 109.7 (2) H6A—C6—H6C 109.5
C5—C3—S1 116.0 (2) H6B—C6—H6C 109.5
C1—C4—H4A 109.5 C2—N1—C1 110.7 (3)
C1—C4—H4B 109.5 C2—N2—H1A 120.0
H4A—C4—H4B 109.5 C2—N2—H1B 120.0
C1—C4—H4C 109.5 H1A—N2—H1B 120.0
H4A—C4—H4C 109.5 C2—S1—C3 88.60 (15)
H4B—C4—H4C 109.5
N1—C1—C3—C5 −179.3 (4) N2—C2—N1—C1 179.3 (3)
C4—C1—C3—C5 2.0 (7) S1—C2—N1—C1 −0.5 (4)
N1—C1—C3—S1 0.0 (4) C3—C1—N1—C2 0.3 (5)
C4—C1—C3—S1 −178.7 (3) C4—C1—N1—C2 179.2 (3)
C1—C3—C5—O1 −179.5 (4) N1—C2—S1—C3 0.4 (3)
S1—C3—C5—O1 1.3 (5) N2—C2—S1—C3 −179.4 (3)
C1—C3—C5—C6 −0.1 (7) C1—C3—S1—C2 −0.2 (3)
S1—C3—C5—C6 −179.4 (3) C5—C3—S1—C2 179.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the (N1/S1/C1–C3) 1,3-thiazole ring.

D—H···A D—H H···A D···A D—H···A
N2—H1A···N1i 0.86 2.11 2.963 (4) 175
N2—H1B···O1ii 0.86 2.02 2.835 (4) 158
C4—H4B···Cg1iii 0.96 2.89 3.603 (4) 132

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.
  2. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  3. Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.
  6. Chen, X. & Xu, L. (2010). Acta Cryst. E66, o2148. [DOI] [PMC free article] [PubMed]
  7. Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862. [DOI] [PubMed]
  8. Donald, M. B., Rodriguez, K. X., Shay, H., Phuan, P.-W., Verkman, A. S. & Kurth, M. J. (2012). Bioorg. Med. Chem. 20, 5247–5253. [DOI] [PMC free article] [PubMed]
  9. Fait, M. J. G., Spannenberg, A., Kondratenko, E. V. & Linke, D. (2021). IUCrData, 6, x211332. [DOI] [PMC free article] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Hazra, D. K., Mukherjee, M., Helliwell, M. & Mukherjee, A. K. (2012). Acta Cryst. C68, o452–o455. [DOI] [PubMed]
  13. Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477. [DOI] [PMC free article] [PubMed]
  14. Kekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502.
  15. Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004a). Acta Cryst. E60, o1188–o1190.
  16. Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004b). Acta Cryst. E60, o1510–o1512.
  17. Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.
  18. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721. [DOI] [PMC free article] [PubMed]
  21. Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307. [DOI] [PMC free article] [PubMed]
  22. Montes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89–95.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.
  28. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.
  29. Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007181/vm2288sup1.cif

e-79-00890-sup1.cif (445.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007181/vm2288Isup2.hkl

e-79-00890-Isup2.hkl (120.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007181/vm2288Isup3.cml

CCDC reference: 2288949

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES