Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 26;79(Pt 10):936–941. doi: 10.1107/S2056989023008186

Racemic cis-bis­[bis­(pyrimidin-2-yl)amine-κN]bis(dicyanamido-κN 1)iron(II) dihydrate: synthesis, crystal structure and Hirshfeld surface analysis

Yaakoub Saadallah a, Zouaoui Setifi b,a, Christian Jelsch c, Fatima Setifi a,*, Mohammed Hadi Al-Douh d, Achouak Satour a, Christopher Glidewell e
Editor: W T A Harrisonf
PMCID: PMC10561211  PMID: 37817951

The solvothermal synthesis, crystal structure and Hirshfeld surface analysis of a new iron(II) complex containing dicyanamido and di(pyrimidin-2-yl)amine ligands are reported

Keywords: solvothermal synthesis, iron complex, dicyanamido ligands, hydrogen bonding, Hirshfeld surface analysis, crystal structure

Abstract

The title compound, [Fe(C2N3)2(C8H7N5)2]·2H2O, has been synthesized solvothermally and characterized by single-crystal X-ray diffraction. The octa­hedral iron coordination polyhedron contains two di(pyrimidin-2-yl)amine ligands coordinated in a bidentate fashion, and two monodentate dicyanimido ligands, each coordinated via a terminal N atom, with the latter in a cis orientation. The ligand configuration about the iron atom is chiral, although the compound crystallizes as a racemic mixture: the Fe—N distances (> 2.07 Å) are characteristic of high-spin iron(II). In the crystal, an extensive series of N—H⋯N, O—H⋯N and O—H⋯O hydrogen bonds links the independent mol­ecular components into a three-dimensional framework. The H atoms of both water mol­ecules are disordered. The structure also features some π–π and anion–π inter­actions. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots. Comparisons are made with some related compounds.

1. Chemical context

Spin crossover (SCO) can occur for some transition-metal complexes where the metal ion is in one of the configurations d 4, d 5, d 6 or d 7 in which the spin state can be switched between high-spin (HS) and low-spin (LS) states by an external perturbation such as temperature, pressure, magnetic field or light irradiation (Goodwin, 2004; Halcrow et al., 2019). In addition to the magnetic changes resulting from the spin-state switching, this SCO behaviour can be accompanied by structural modifications and changes in the optical properties such as colour changes, making these SCO systems promising candidates for applications such as the development of new generations of memory devices and sensors (Sato, 2016; Bisoyi & Li, 2016). For the preparation of these compounds, our strategy is based on the use of cyano-carbanion ligands for designing such SCO materials. These organic anions are versatile and effective for developing mol­ecular architectures with different topologies and dimensionalities, as a result of their ability to coordinate and bridge metal ions in many different ways (see, for example, Gaamoune et al., 2010; Addala et al., 2019; Setifi et al., 2017; Merabet et al., 2022, Dmitrienko et al., 2020). 1.

Continuing our study of spin-crossover 3d-metal complexes formed by polydentate ligands (Benmansour et al., 2010; Setifi, Charles et al., 2013; Setifi, Milin et al., 2014; Cuza et al., 2021), we now describe the synthesis and structure of the title FeII complex, (I), containing the dicyanamido anionic ligand and neutral di-2-pyrimidyl­amine (dipm) as co-ligand, which crystallizes as a dihydrate.

2. Structural commentary

In compound (I), which crystallizes as a dihydrate (Fig. 1), the iron(II) centre is coordinated by two monodentate dicyan­amido ligands, which occupy a pair of cis sites, and by two di(pyrimidin-2-yl)amine ligands, each coordinated to the FeII atom in a bidentate fashion by a pair of pyrimidine N atoms, one in each ring. The complex is thus chiral and in the arbitrarily chosen asymmetric unit, the complex has a Δ configuration, although the centrosymmetric space group confirms that the compound has crystallized as a racemic mixture. Although cis-complexes of the general type M(LL)2 X 2, where LL represents a bidentate ligand, can exhibit twofold rotation symmetry, that is not the case here, as the two dicyanamide ligands adopt different orientations relative to the rest of the complex (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of (I) showing the hydrogen bonds as dashed lines. The water H-atom sites forming the hydrogen bonds to atoms N55 and N65 have full occupancy, but the other water H-atom sites have 0.5 occupancy (see text). Displacement ellipsoids are drawn at the 50% probability level.

Within the iron complex, the Fe—N distances span the range 2.077 (4)–2.230 (3) Å (Table 1), indicating that the Fe centre adopts a high-spin configuration at 170 K: for a low-spin configuration, the Fe—N distances would be close to 1.95 Å (Orpen et al., 1989). In the anionic ligands, there is a marked difference between the central C—N distances, all close to 1.30 Å and the terminal distances, all close to 1.15 Å (Table 1). Combined with the C—N—C bond angles at the central atoms N53 and N63 of 119.7 (4) and 121.4 (4)°, respectively, these data indicate a strong degree of bond fixation in these ligands, with the negative charge localized primarily on the central N atoms. In this connection, it is inter­esting that the central atoms N53 and N63 participate in neither the hydrogen bonding nor the anion–π contacts (see Section 3, below).

Table 1. Selected geometric parameters (Å, °).

Fe1—N61 2.077 (4) C52—N53 1.301 (6)
Fe1—N51 2.144 (4) N53—C54 1.321 (6)
Fe1—N11 2.175 (3) C54—N55 1.156 (6)
Fe1—N31 2.176 (3) N61—C62 1.151 (5)
Fe1—N41 2.224 (3) C62—N63 1.297 (6)
Fe1—N21 2.230 (3) N63—C64 1.310 (6)
N51—C52 1.157 (6) C64—N65 1.129 (6)
       
N31—Fe1—N41 79.26 (12) C52—N53—C54 119.7 (4)
N11—Fe1—N21 78.51 (12) C62—N61—Fe1 170.6 (4)
C52—N51—Fe1 145.4 (3) C62—N63—C64 121.4 (4)

In each of the two independent water mol­ecules, the H atom (H71 or H81) forming an O—H⋯N hydrogen bond (Table 2) is fully ordered, but the other H atom is disordered over two sites. For the selected asymmetric unit (Fig. 1), inversion-related pairs of water mol­ecules containing atom O71 lie across the inversion centre at the origin with an O⋯O distances between them of 2.770 (6) Å, and they are linked by half-occupancy H atoms occupying two inversion-related sites separated by only 1.10 Å, so that for any such pair of water mol­ecules, if one site is occupied, the other must be vacant. A similar pair of water mol­ecules containing the atom O81 lies across the inversion centre at (1/2, 1, 1), with the O⋯O separation of 2.751 (5) Å and again linked by disordered H atoms occupying two sites. For the pairs of water mol­ecules containing atom O71, the partial-occupancy H atoms lie close to the O⋯O line, but for the pairs containing atom O81, the OHOH array describes a parallelogram. In addition, the atoms O71 at (x, y, z) and O81 at (−x, 1 − y, 1 − z), are separated by only 2.683 (6) Å and these also are linked by two half-occupancy H-atom sites (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N23i 0.84 (4) 2.11 (5) 2.942 (4) 170 (5)
N3—H3⋯N43ii 0.89 (5) 2.03 (5) 2.918 (4) 175 (5)
O71—H71⋯N55 0.86 (5) 2.11 (5) 2.959 (6) 173 (6)
O71—H72⋯O81iii 0.86 (6) 1.84 (5) 2.683 (6) 164 (11)
O71—H73⋯O71iv 0.85 (8) 1.99 (7) 2.770 (6) 152 (8)
O81—H81⋯N65 0.85 (4) 2.04 (4) 2.871 (5) 166 (7)
O81—H82⋯O71iii 0.86 (7) 1.89 (6) 2.683 (6) 153 (8)
O81—H83⋯O81v 0.86 (8) 2.04 (7) 2.751 (5) 140 (8)
C36—H36⋯N53iii 0.95 2.49 3.195 (6) 131
C46—H46⋯N65vi 0.95 2.53 3.309 (6) 139

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

3. Supra­molecular features

The structure of compound (I) contains N—H⋯H, O—H⋯N and O—H⋯·O hydrogen bonds (Table 2) and together these link the independent mol­ecular components into a three-dimensional network. The structure contains no C—H⋯π hydrogen bonds but π–π stacking inter­actions and short anion–π contacts are both present.

The hydrogen-bonded framework structure is readily analysed in terms of simple one-dimensional substructures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). In the simplest of the sub-structures, the iron complexes are linked by N—H⋯N hydrogen bonds (Table 2), forming a chain of rings running parallel to the [100] direction (Fig. 2). Centrosymmetric Inline graphic (8) rings (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) in which atoms of type N1 act as the hydrogen-bond donors are centred at (n + ½, ½, 0) and these alternate with Inline graphic (8) rings in which atoms of type N3 act as the donors and which are centred at (n, ½, 0), where n represents an integer in each case.

Figure 2.

Figure 2

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded chain of Inline graphic (8) rings formed by the Fe complexes and running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the water mol­ecules and the H atoms bonded to C atoms have been omitted.

It is possible to identify a number of one-dimensional sub-structures in which the iron complexes are linked into a variety of chains by the water mol­ecules and it is sufficient here to illustrate just two examples, running parallel to the [010] (Fig. 3) and [001] (Fig. 4) directions, respectively. It is also possible to identify chains consisting only of water mol­ecules and running along (x, 0, 0), (x, 0, 1), (x, 1, 0) and (x, 1, 1) (Fig. 5). In each of these chains, there are two H-atom sites between successive O atoms (Fig. 5), with H⋯H distances such that if one of these H sites is occupied, then the other must be vacant, leading to correlation of the H-atom occupancies along the whole chain, consistent with the overall half occupancy of these sites. However, there is no correlation of the H-atom site occupancies between neighbouring chains. The combination of chain motifs along [100], [010] and [001] (Figs. 2–5 ) is sufficient to confirm the three-dimensional nature of the hydrogen-bonded assembly, but other chain motifs, in which the iron complexes are linked by water mol­ecules, can be identified running parallel to [110], [011], [ Inline graphic 01], [012] and [111]. The two short inter­molecular C—H⋯N contacts both have small D—H⋯A angles (Table 2), and so may be of limited structural significance (Wood et al., 2009). The structure of (I) also contains a single π–π stacking inter­action between iron complexes related by translation along [100]. The rings containing atoms N11 and N31, in the complexes at (x, y, z) and (1 + x, y, z) make a dihedral angle of 11.9 (2)° with a corresponding ring-centroid separation of 3.645 (2) Å, leading to the formation of a weakly π-stacked chain along [100] (Fig. 6).

Figure 3.

Figure 3

Part of the crystal structure of compound (I) showing the linking of the iron complexes by the water mol­ecules to form a chain parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the linking of the iron complexes by the water mol­ecules to form a chain parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 5.

Figure 5

Part of the crystal structure of compound (I) showing the formation of a chain of water mol­ecules running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines, and the H atoms involved in the hydrogen bonds shown have occupancy 0.5. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (−x, −y, −z), (x, −1 + y, −1 + z), (1 − x, 1 − y, 1 − z) and (1 + x, y, z), respectively.

Figure 6.

Figure 6

Part of the crystal structure of compound (I) showing the formation of a π-stacked chain running parallel to [100]. For the sake of clarity, the water mol­ecules and the H atoms have all been omitted.

We also note the presence of two short inter­molecular anion–π contacts (Table 3), both involving the terminal N atom of a dicyanamido ligand. Since both these two N atoms also act as acceptors in O—H⋯N hydrogen bonds (Table 2), it is unclear how significant the anion–π contacts might be.

Table 3. Geometrical parameters (Å, °) for short anion–π contacts.

Cg1 and Cg2 represent the centroids of the rings (N31,C32,N33,C34,C35,C36) and (N11,C12,N13,C14,C15,C16), respectively.

C—N⋯Cg C—N N⋯Cg C⋯Cg C—N⋯Cg
C54—N55⋯Cg1i 1.156 (6) 3.720 (5) 4.469 (6) 123.9 (4)
C64—N65⋯Cg2ii 1.129 (6) 3.676 (5) 4.049 (5) 101.2 (3)

Symmetry codes: (i) x, −1 + y, z; (ii) 1 − x, 1 − y, 1 − z.

4. Database survey

While there do not appear to be any previous structural reports on iron complexes containing the di(pyrimidin-2-yl)amine ligand, there are a few reports of complexes with other metals, including some coordination polymers involving this ligand bound to copper(II) (Gamez et al., 2005; van Albada et al., 2007), and an isostructural pair of mononuclear zinc and cadmium complexes (van Albada et al., 2008).

5. Hirshfeld surface analysis

MoProViewer software (Guillot et al., 2014) was used to investigate the inter­molecular inter­actions and their enrichment on the Hirshfeld surface around the iron complex. The Hirshfeld two-dimensional fingerprint plots of contacts were generated with Crystal Explorer (Spackman et al., 2021). The Hirshfeld contact surface of the iron complex is mainly constituted by C, H-c and N atoms, which represent 95% of the total. The largest contributions for the contacts in the crystal packing are of C—H⋯N and C—H⋯C types, where the C—H⋯N contacts are weak hydrogen bonds. These are followed by the stacking contacts of C⋯C and C⋯N types. In the fingerprint plots (Fig. 7), there are two short spikes at short distance representing the N⋯H hydrogen bonds. The H⋯H contacts also show a widened spike around the main diagonal at short distances. On the other hand, the iron complex makes C—H⋯O contacts with the water oxygen atoms, at longer distances.

Figure 7.

Figure 7

Hirshfeld surface fingerprint plots around the organic molecule.

The inter­molecular inter­actions were further evaluated by computing the contact enrichment ratios (supplementary Table 1) in order to highlight which contacts are favoured. Contacts XY that are over-represented with respect to the share of X and Y chemical species on the Hirshfeld surface have enrichments larger than unity. They are likely to represent attractive inter­actions and thus to be the driving force in the crystal formation (Jelsch et al., 2014). The enrichment values are obtained as the ratio between the proportions of actual contacts C xy and the equiprobable (random) contacts Rxy , the latter being obtained from the probability products (Rxy = SxSy ). The strong hydrogen bonds of O—H⋯N and N—H⋯N types represent only 9.2% of the contacts surface but are the most over-represented (E = 1.84) among the significant contacts. The abundant C—H⋯N contacts are also quite enriched at E = 1.62. Among the major hydro­phobic inter­actions, C⋯C stacking is moderately enriched while the weak C⋯H contacts are marginally under-represented (E = 1.27 and 0.94, respectively).

6. Synthesis and crystallization

The ligand di(pyrimidin-2-yl)amine (dipm) was prepared according to the published method (Yao et al., 2000). The title compound was prepared solvothermally under autogenous pressure from a mixture of iron(II) bis­(tetra­fluoro­borate) hexa­hydrate (34 mg, 0.1 mmol), dipm (35 mg, 0.2 mmol) and sodium dicyanamide (18 mg, 0.2 mmol) in a mixture of water and ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 403 K for two days, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product (yield 42%). Yellow needle-shaped crystals of the title compound were selected directly from the synthesized product.

7. Refinement

Crystal data, data collection and refinement details are summarized in Table 4. One bad outlier reflection, ( Inline graphic Inline graphic 9), was removed from the data set. The refinement was handled as a non-merohedral twin, with twin matrix (1.000, 0.000, 0.000/-0.016, −1.000, 0.000/–0.183, 0.000, −1.000) and with refined twin fractions of 0.178 (3) and 0.822 (3). All the H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å and with U iso(H) = 1.2U eq(C). In each of the water mol­ecules, one of the H atoms was found to be disordered over two atomic sites: when the atomic coordinates of the water H atoms were refined with U iso(H) = 1.5U eq(O) but with no geometrical restraints, the resulting O—H distances were closely clustered around 0.86 Å, but the range of the H—O—H angles was too large to be regarded as satisfactory. Hence distance restraints of O—H = 0.86 (2) Å and H⋯H = 1.36 (2) Å were applied to both water mol­ecules. A number of apparently short inter­molecular H⋯H distances indicated strong correlation between the occupancies of the sites H72, H73, H82 and H83, and refinement of these occupancies, subject to such correlation, gave values well within one s.u. of 0.5: consequently these occupancies were all fixed at 0.5. The resulting hydrogen-bond parameters are given in Table 2. For the H atoms bonded to N atoms or O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) giving N—H distances of 0.84 (4) and 0.89 (5) Å.

Table 4. Experimental details.

Crystal data
Chemical formula [Fe(C2N3)2(C8H7N5)2]·2H2O
M r 570.35
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 170
a, b, c (Å) 8.1960 (7), 10.4671 (11), 14.7926 (14)
α, β, γ (°) 105.254 (4), 92.903 (3), 90.356 (4)
V3) 1222.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.623, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 6056, 6056, 5802
R int 0.037
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.157, 1.12
No. of reflections 6056
No. of parameters 377
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.47, −0.58

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS86 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023008186/hb8076sup1.cif

e-79-00936-sup1.cif (260.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023008186/hb8076Isup2.hkl

e-79-00936-Isup2.hkl (481.4KB, hkl)

The proportions of the different contacts and their enrichment in the title compound. DOI: 10.1107/S2056989023008186/hb8076sup3.pdf

e-79-00936-sup3.pdf (15.4KB, pdf)

CCDC reference: 2295696

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, ZS and FS; methodology, ZS and FS; investigation, YS, CJ and AS; writing (original draft), ZS, CG and CJ; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and SF; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.

supplementary crystallographic information

Crystal data

[Fe(C2N3)2(C8H7N5)2]·2H2O Z = 2
Mr = 570.35 F(000) = 584
Triclinic, P1 Dx = 1.549 Mg m3
a = 8.1960 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4671 (11) Å Cell parameters from 6057 reflections
c = 14.7926 (14) Å θ = 2.5–28.4°
α = 105.254 (4)° µ = 0.67 mm1
β = 92.903 (3)° T = 170 K
γ = 90.356 (4)° Needle, yellow
V = 1222.5 (2) Å3 0.25 × 0.20 × 0.15 mm

Data collection

Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos diffractometer 6056 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 5802 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −10→10
Tmin = 0.623, Tmax = 0.906 k = −13→13
6056 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + 5.9338P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
6056 reflections Δρmax = 1.47 e Å3
377 parameters Δρmin = −0.58 e Å3
12 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.28878 (7) 0.59497 (5) 0.32111 (3) 0.01841 (13)
N1 0.5194 (4) 0.5167 (3) 0.1355 (2) 0.0228 (7)
H1 0.547 (6) 0.478 (5) 0.081 (3) 0.027*
N11 0.5331 (4) 0.5184 (3) 0.2957 (2) 0.0219 (6)
C12 0.5903 (5) 0.4757 (4) 0.2095 (3) 0.0215 (7)
N13 0.7127 (4) 0.3911 (3) 0.1857 (2) 0.0278 (7)
C14 0.7890 (5) 0.3528 (4) 0.2551 (3) 0.0306 (9)
H14 0.8742 0.2908 0.2405 0.037*
C15 0.7495 (5) 0.3994 (4) 0.3485 (3) 0.0306 (9)
H15 0.8100 0.3757 0.3979 0.037*
C16 0.6190 (5) 0.4812 (4) 0.3648 (3) 0.0286 (8)
H16 0.5870 0.5134 0.4275 0.034*
N21 0.3681 (4) 0.6974 (3) 0.2158 (2) 0.0202 (6)
C22 0.4278 (5) 0.6255 (3) 0.1357 (3) 0.0196 (7)
N23 0.4029 (4) 0.6478 (3) 0.0507 (2) 0.0262 (7)
C24 0.3213 (6) 0.7560 (4) 0.0474 (3) 0.0312 (9)
H24 0.2981 0.7733 −0.0118 0.037*
C25 0.2687 (6) 0.8452 (4) 0.1280 (3) 0.0290 (8)
H25 0.2186 0.9259 0.1257 0.035*
C26 0.2932 (5) 0.8103 (4) 0.2110 (3) 0.0241 (8)
H26 0.2561 0.8676 0.2669 0.029*
N3 0.0205 (4) 0.5704 (3) 0.1378 (2) 0.0221 (6)
H3 −0.026 (6) 0.586 (5) 0.086 (3) 0.027*
N31 0.0422 (4) 0.6630 (3) 0.3022 (2) 0.0233 (7)
C32 −0.0328 (5) 0.6564 (4) 0.2185 (3) 0.0208 (7)
N33 −0.1591 (4) 0.7287 (3) 0.2022 (2) 0.0278 (7)
C34 −0.2224 (5) 0.8094 (4) 0.2778 (3) 0.0309 (9)
H34 −0.3109 0.8639 0.2692 0.037*
C35 −0.1622 (6) 0.8155 (5) 0.3684 (3) 0.0344 (10)
H35 −0.2121 0.8683 0.4218 0.041*
C36 −0.0275 (5) 0.7417 (4) 0.3772 (3) 0.0294 (9)
H36 0.0184 0.7461 0.4382 0.035*
N41 0.1913 (4) 0.4328 (3) 0.2006 (2) 0.0206 (6)
C42 0.1115 (5) 0.4589 (4) 0.1268 (2) 0.0198 (7)
N43 0.1116 (4) 0.3831 (3) 0.0374 (2) 0.0253 (7)
C44 0.1914 (6) 0.2702 (4) 0.0234 (3) 0.0289 (9)
H44 0.1978 0.2163 −0.0389 0.035*
C45 0.2662 (5) 0.2281 (4) 0.0969 (3) 0.0267 (8)
H45 0.3150 0.1437 0.0868 0.032*
C46 0.2661 (5) 0.3141 (4) 0.1844 (3) 0.0211 (7)
H46 0.3202 0.2900 0.2356 0.025*
N51 0.2329 (5) 0.4644 (4) 0.4057 (2) 0.0326 (8)
C52 0.1779 (5) 0.3624 (4) 0.4059 (3) 0.0276 (8)
N53 0.1117 (7) 0.2525 (4) 0.4132 (3) 0.0489 (12)
C54 0.0792 (6) 0.1549 (5) 0.3370 (3) 0.0356 (10)
N55 0.0436 (6) 0.0672 (4) 0.2730 (3) 0.0485 (11)
N61 0.3620 (5) 0.7507 (4) 0.4355 (2) 0.0338 (8)
C62 0.4141 (6) 0.8241 (4) 0.5033 (3) 0.0326 (9)
N63 0.4727 (9) 0.9156 (5) 0.5750 (3) 0.0694 (19)
C64 0.4855 (6) 0.8965 (4) 0.6591 (3) 0.0325 (9)
N65 0.5029 (6) 0.8940 (4) 0.7348 (3) 0.0404 (9)
O71 −0.0803 (5) 0.0590 (4) 0.0801 (3) 0.0548 (10)
H71 −0.037 (8) 0.059 (7) 0.134 (3) 0.082*
H72 −0.177 (6) 0.025 (11) 0.079 (6) 0.082* 0.5
H73 −0.028 (11) 0.002 (9) 0.041 (4) 0.082* 0.5
O81 0.4001 (5) 0.9987 (4) 0.9222 (2) 0.0492 (10)
H81 0.439 (8) 0.981 (7) 0.868 (2) 0.074*
H82 0.309 (7) 0.955 (9) 0.915 (6) 0.074* 0.5
H83 0.464 (9) 0.960 (9) 0.954 (5) 0.074* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0221 (3) 0.0223 (3) 0.0094 (2) 0.0008 (2) −0.00059 (18) 0.00175 (18)
N1 0.0282 (17) 0.0237 (16) 0.0160 (14) 0.0051 (13) 0.0043 (12) 0.0041 (12)
N11 0.0203 (15) 0.0290 (16) 0.0161 (14) −0.0020 (12) −0.0004 (11) 0.0055 (12)
C12 0.0218 (17) 0.0214 (17) 0.0211 (17) 0.0000 (14) 0.0009 (14) 0.0051 (14)
N13 0.0311 (18) 0.0271 (17) 0.0277 (17) 0.0068 (14) 0.0048 (14) 0.0108 (14)
C14 0.027 (2) 0.032 (2) 0.036 (2) 0.0074 (17) 0.0041 (17) 0.0158 (18)
C15 0.027 (2) 0.037 (2) 0.031 (2) 0.0004 (17) −0.0056 (16) 0.0145 (18)
C16 0.030 (2) 0.038 (2) 0.0184 (17) −0.0032 (17) −0.0054 (15) 0.0086 (16)
N21 0.0252 (16) 0.0181 (14) 0.0165 (14) −0.0010 (12) 0.0024 (12) 0.0027 (11)
C22 0.0225 (17) 0.0163 (16) 0.0199 (16) −0.0033 (13) 0.0034 (13) 0.0044 (13)
N23 0.0364 (19) 0.0249 (16) 0.0193 (15) 0.0050 (14) 0.0054 (13) 0.0088 (13)
C24 0.046 (3) 0.026 (2) 0.026 (2) 0.0066 (18) 0.0070 (18) 0.0135 (16)
C25 0.040 (2) 0.0185 (17) 0.032 (2) 0.0050 (16) 0.0084 (18) 0.0099 (15)
C26 0.030 (2) 0.0152 (16) 0.0243 (18) −0.0006 (14) 0.0052 (15) 0.0005 (14)
N3 0.0288 (17) 0.0225 (15) 0.0128 (13) 0.0029 (13) −0.0043 (12) 0.0020 (12)
N31 0.0244 (16) 0.0262 (16) 0.0161 (14) 0.0041 (13) 0.0018 (12) −0.0004 (12)
C32 0.0222 (17) 0.0200 (17) 0.0200 (16) 0.0016 (14) 0.0008 (14) 0.0051 (13)
N33 0.0292 (18) 0.0227 (16) 0.0276 (17) 0.0056 (14) −0.0048 (14) 0.0005 (13)
C34 0.025 (2) 0.027 (2) 0.037 (2) 0.0053 (16) −0.0007 (17) 0.0029 (17)
C35 0.033 (2) 0.037 (2) 0.029 (2) 0.0061 (18) 0.0088 (17) 0.0004 (18)
C36 0.034 (2) 0.033 (2) 0.0193 (18) 0.0025 (17) 0.0056 (16) 0.0026 (16)
N41 0.0249 (16) 0.0199 (15) 0.0167 (14) −0.0003 (12) 0.0005 (12) 0.0044 (11)
C42 0.0245 (18) 0.0181 (16) 0.0154 (15) −0.0042 (13) −0.0021 (13) 0.0029 (13)
N43 0.0369 (19) 0.0203 (15) 0.0157 (14) 0.0020 (13) −0.0047 (13) 0.0007 (12)
C44 0.045 (2) 0.0206 (18) 0.0182 (17) 0.0039 (17) −0.0035 (16) 0.0005 (14)
C45 0.037 (2) 0.0200 (17) 0.0225 (18) 0.0045 (16) −0.0027 (16) 0.0061 (14)
C46 0.0248 (18) 0.0201 (17) 0.0200 (16) −0.0005 (14) −0.0015 (14) 0.0087 (14)
N51 0.044 (2) 0.038 (2) 0.0158 (15) −0.0006 (17) 0.0008 (14) 0.0076 (14)
C52 0.035 (2) 0.034 (2) 0.0154 (16) 0.0064 (17) 0.0033 (15) 0.0094 (15)
N53 0.083 (4) 0.041 (2) 0.0258 (19) −0.007 (2) 0.013 (2) 0.0110 (17)
C54 0.035 (2) 0.035 (2) 0.040 (2) 0.0089 (19) 0.0094 (19) 0.014 (2)
N55 0.052 (3) 0.039 (2) 0.049 (3) 0.002 (2) 0.006 (2) 0.002 (2)
N61 0.043 (2) 0.0331 (19) 0.0202 (16) −0.0012 (16) −0.0024 (15) −0.0008 (14)
C62 0.048 (3) 0.027 (2) 0.0219 (19) −0.0028 (19) −0.0040 (18) 0.0072 (16)
N63 0.142 (6) 0.037 (2) 0.025 (2) −0.033 (3) −0.023 (3) 0.0074 (18)
C64 0.044 (3) 0.0227 (19) 0.025 (2) −0.0026 (18) −0.0047 (18) −0.0018 (16)
N65 0.050 (3) 0.040 (2) 0.0263 (19) −0.0017 (19) −0.0038 (17) 0.0014 (16)
O71 0.046 (2) 0.066 (3) 0.048 (2) −0.002 (2) 0.0036 (18) 0.005 (2)
O81 0.042 (2) 0.070 (3) 0.0287 (17) 0.0037 (19) 0.0054 (15) −0.0011 (17)

Geometric parameters (Å, º)

Fe1—N61 2.077 (4) N31—C36 1.350 (5)
Fe1—N51 2.144 (4) C32—N33 1.335 (5)
Fe1—N11 2.175 (3) N33—C34 1.342 (5)
Fe1—N31 2.176 (3) C34—C35 1.388 (6)
Fe1—N41 2.224 (3) C34—H34 0.9500
Fe1—N21 2.230 (3) C35—C36 1.372 (6)
N1—C22 1.367 (5) C35—H35 0.9500
N1—C12 1.381 (5) C36—H36 0.9500
N1—H1 0.84 (5) N41—C42 1.335 (5)
N11—C12 1.344 (5) N41—C46 1.357 (5)
N11—C16 1.354 (5) C42—N43 1.351 (4)
C12—N13 1.341 (5) N43—C44 1.327 (5)
N13—C14 1.327 (5) C44—C45 1.394 (5)
C14—C15 1.394 (6) C44—H44 0.9500
C14—H14 0.9500 C45—C46 1.368 (5)
C15—C16 1.365 (6) C45—H45 0.9500
C15—H15 0.9500 C46—H46 0.9500
C16—H16 0.9500 N51—C52 1.157 (6)
N21—C22 1.343 (5) C52—N53 1.301 (6)
N21—C26 1.352 (5) N53—C54 1.321 (6)
C22—N23 1.343 (5) C54—N55 1.156 (6)
N23—C24 1.330 (5) N61—C62 1.151 (5)
C24—C25 1.396 (6) C62—N63 1.297 (6)
C24—H24 0.9500 N63—C64 1.310 (6)
C25—C26 1.375 (6) C64—N65 1.129 (6)
C25—H25 0.9500 O71—H71 0.860 (19)
C26—H26 0.9500 O71—H72 0.86 (2)
N3—C42 1.367 (5) O71—H73 0.85 (2)
N3—C32 1.385 (5) O81—H81 0.858 (19)
N3—H3 0.89 (5) O81—H82 0.86 (2)
N31—C32 1.340 (5) O81—H83 0.86 (2)
N61—Fe1—N51 93.91 (15) C42—N3—C32 130.2 (3)
N61—Fe1—N11 95.09 (14) C42—N3—H3 117 (3)
N51—Fe1—N11 93.49 (14) C32—N3—H3 112 (3)
N61—Fe1—N31 96.63 (14) C32—N31—C36 115.9 (3)
N51—Fe1—N31 97.71 (14) C32—N31—Fe1 124.0 (3)
N11—Fe1—N31 163.16 (11) C36—N31—Fe1 118.5 (3)
N61—Fe1—N41 175.73 (15) N33—C32—N31 126.1 (3)
N51—Fe1—N41 85.54 (13) N33—C32—N3 113.3 (3)
N11—Fe1—N41 89.17 (12) N31—C32—N3 120.6 (3)
N31—Fe1—N41 79.26 (12) C32—N33—C34 116.4 (4)
N61—Fe1—N21 94.04 (13) N33—C34—C35 122.0 (4)
N51—Fe1—N21 169.19 (13) N33—C34—H34 119.0
N11—Fe1—N21 78.51 (12) C35—C34—H34 119.0
N31—Fe1—N21 88.64 (12) C36—C35—C34 116.9 (4)
N41—Fe1—N21 87.07 (11) C36—C35—H35 121.5
C22—N1—C12 130.0 (3) C34—C35—H35 121.5
C22—N1—H1 112 (3) N31—C36—C35 122.4 (4)
C12—N1—H1 117 (3) N31—C36—H36 118.8
C12—N11—C16 115.6 (3) C35—C36—H36 118.8
C12—N11—Fe1 123.4 (3) C42—N41—C46 116.1 (3)
C16—N11—Fe1 119.1 (3) C42—N41—Fe1 121.2 (2)
N13—C12—N11 125.8 (4) C46—N41—Fe1 117.7 (2)
N13—C12—N1 114.0 (3) N41—C42—N43 125.5 (3)
N11—C12—N1 120.2 (3) N41—C42—N3 120.4 (3)
C14—N13—C12 116.3 (4) N43—C42—N3 114.2 (3)
N13—C14—C15 122.9 (4) C44—N43—C42 116.7 (3)
N13—C14—H14 118.5 N43—C44—C45 122.3 (4)
C15—C14—H14 118.5 N43—C44—H44 118.9
C16—C15—C14 116.1 (4) C45—C44—H44 118.9
C16—C15—H15 121.9 C46—C45—C44 116.7 (4)
C14—C15—H15 121.9 C46—C45—H45 121.6
N11—C16—C15 122.9 (4) C44—C45—H45 121.6
N11—C16—H16 118.5 N41—C46—C45 122.3 (3)
C15—C16—H16 118.5 N41—C46—H46 118.8
C22—N21—C26 115.9 (3) C45—C46—H46 118.8
C22—N21—Fe1 119.2 (2) C52—N51—Fe1 145.4 (3)
C26—N21—Fe1 118.4 (2) N51—C52—N53 175.0 (4)
N23—C22—N21 125.8 (3) C52—N53—C54 119.7 (4)
N23—C22—N1 114.0 (3) N55—C54—N53 176.1 (6)
N21—C22—N1 120.2 (3) C62—N61—Fe1 170.6 (4)
C24—N23—C22 116.6 (3) N61—C62—N63 174.3 (5)
N23—C24—C25 122.2 (4) C62—N63—C64 121.4 (4)
N23—C24—H24 118.9 N65—C64—N63 172.4 (5)
C25—C24—H24 118.9 H71—O71—H72 105 (3)
C26—C25—C24 116.7 (4) H71—O71—H73 106 (3)
C26—C25—H25 121.7 H72—O71—H73 106 (3)
C24—C25—H25 121.7 H81—O81—H82 105 (3)
N21—C26—C25 122.3 (3) H81—O81—H83 104 (3)
N21—C26—H26 118.8 H82—O81—H83 105 (3)
C25—C26—H26 118.8
C16—N11—C12—N13 6.7 (6) C36—N31—C32—N33 6.5 (6)
Fe1—N11—C12—N13 −157.3 (3) Fe1—N31—C32—N33 −158.9 (3)
C16—N11—C12—N1 −174.9 (4) C36—N31—C32—N3 −174.7 (4)
Fe1—N11—C12—N1 21.1 (5) Fe1—N31—C32—N3 19.8 (5)
C22—N1—C12—N13 −159.5 (4) C42—N3—C32—N33 −159.9 (4)
C22—N1—C12—N11 21.9 (6) C42—N3—C32—N31 21.2 (6)
N11—C12—N13—C14 −4.0 (6) N31—C32—N33—C34 −4.5 (6)
N1—C12—N13—C14 177.5 (4) N3—C32—N33—C34 176.7 (4)
C12—N13—C14—C15 −1.8 (6) C32—N33—C34—C35 −1.3 (6)
N13—C14—C15—C16 4.3 (7) N33—C34—C35—C36 4.2 (7)
C12—N11—C16—C15 −3.7 (6) C32—N31—C36—C35 −3.0 (6)
Fe1—N11—C16—C15 161.0 (3) Fe1—N31—C36—C35 163.3 (4)
C14—C15—C16—N11 −1.3 (6) C34—C35—C36—N31 −2.0 (7)
C26—N21—C22—N23 −8.3 (6) C46—N41—C42—N43 −6.1 (6)
Fe1—N21—C22—N23 143.1 (3) Fe1—N41—C42—N43 148.2 (3)
C26—N21—C22—N1 173.6 (3) C46—N41—C42—N3 174.3 (3)
Fe1—N21—C22—N1 −35.0 (5) Fe1—N41—C42—N3 −31.4 (5)
C12—N1—C22—N23 168.6 (4) C32—N3—C42—N41 −14.0 (6)
C12—N1—C22—N21 −13.1 (6) C32—N3—C42—N43 166.4 (4)
N21—C22—N23—C24 5.0 (6) N41—C42—N43—C44 3.6 (6)
N1—C22—N23—C24 −176.8 (4) N3—C42—N43—C44 −176.8 (4)
C22—N23—C24—C25 2.2 (7) C42—N43—C44—C45 2.6 (6)
N23—C24—C25—C26 −5.3 (7) N43—C44—C45—C46 −5.5 (7)
C22—N21—C26—C25 4.6 (6) C42—N41—C46—C45 2.7 (6)
Fe1—N21—C26—C25 −147.1 (3) Fe1—N41—C46—C45 −152.6 (3)
C24—C25—C26—N21 1.7 (6) C44—C45—C46—N41 2.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N23i 0.84 (4) 2.11 (5) 2.942 (4) 170 (5)
N3—H3···N43ii 0.89 (5) 2.03 (5) 2.918 (4) 175 (5)
O71—H71···N55 0.86 (5) 2.11 (5) 2.959 (6) 173 (6)
O71—H72···O81iii 0.86 (6) 1.84 (5) 2.683 (6) 164 (11)
O71—H73···O71iv 0.85 (8) 1.99 (7) 2.770 (6) 152 (8)
O81—H81···N65 0.85 (4) 2.04 (4) 2.871 (5) 166 (7)
O81—H82···O71iii 0.86 (7) 1.89 (6) 2.683 (6) 153 (8)
O81—H83···O81v 0.86 (8) 2.04 (7) 2.751 (5) 140 (8)
C36—H36···N53iii 0.95 2.49 3.195 (6) 131
C46—H46···N65vi 0.95 2.53 3.309 (6) 139

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z; (v) −x+1, −y+2, −z+2; (vi) −x+1, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: the Algerian MESRS (Ministère de l’Enseignement Supéerieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and PRFU project (grant No. B00L01UN190120230003).

References

  1. Addala, A., Geiger, D. K., Setifi, Z. & Setifi, F. (2019). Acta Cryst. C75, 348–353. [DOI] [PubMed]
  2. Albada, G. A. van, Mutikainen, L., Turpeinen, U. & Reedijk, J. (2007). J. Mol. Struct. 837, 43–47.
  3. Albada, G. A. van, van der Horst, M. G., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2008). J. Chem. Crystallogr. 38, 5190–523.
  4. Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bisoyi, H. K. & Li, Q. (2016). Chem. Rev. 116, 15089–15166. [DOI] [PubMed]
  7. Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.
  8. Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. [DOI] [PubMed]
  9. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  10. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  11. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  12. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  13. Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. [DOI] [PMC free article] [PubMed]
  14. Gamez, P., van Albada, G. A., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 1975–1980.
  15. Goodwin, H. A. (2004). Top. Curr. Chem. 233, 59–90.
  16. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  17. Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.
  18. Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. [DOI] [PubMed]
  19. Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. [DOI] [PMC free article] [PubMed]
  20. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  21. Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747.
  22. Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.
  23. Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  24. Sato, O. (2016). Nat. Chem. 8, 644–656. [DOI] [PubMed]
  25. Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.
  26. Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.
  27. Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104. [DOI] [PubMed]
  28. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  29. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  30. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  31. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  33. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
  34. Yao, W., Kavallieratos, K., de Gala, S. & Crabtree, R. H. (2000). Inorg. Chim. Acta, 311, 45–49.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023008186/hb8076sup1.cif

e-79-00936-sup1.cif (260.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023008186/hb8076Isup2.hkl

e-79-00936-Isup2.hkl (481.4KB, hkl)

The proportions of the different contacts and their enrichment in the title compound. DOI: 10.1107/S2056989023008186/hb8076sup3.pdf

e-79-00936-sup3.pdf (15.4KB, pdf)

CCDC reference: 2295696

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES