Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 12;79(Pt 10):899–904. doi: 10.1107/S2056989023007272

Synthesis, crystal structure and Hirshfeld surface analysis of 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride monohydrate

Firudin I Guseinov a,b, Viacheslav O Ovsyannikov b,c, Pavel V Sokolovskiy b, Yurii L Sebyakin c, Aida I Samigullina b, Mehmet Akkurt d, Sevim Türktekin Çelikesir e, Ajaya Bhattarai f,*
Editor: J Reibenspiesg
PMCID: PMC10561212  PMID: 37817960

In the salt 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride monohydrate, water mol­ecules form an Inline graphic (8) motif parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds. The cations are connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of water mol­ecules.

Keywords: crystal structure; imidazo[1,2-a]pyridin-1-ium; hydrogen bonds; π–π inter­actions; Hirshfeld surface analysis

Abstract

In the title salt, C15H12FN2O+·Cl·H2O, the imidazo[1,2-a]pyridin-1-ium ring system of the cation is almostly planar [maximum deviaition = −0.047 (2) Å for the ring C atom with the attached arene ring] and forms a dihedral angle of 61.81 (6)° with the plane of the fluoro­phenyl ring. In the crystal, water mol­ecules form an R 2 4(8) motif parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds. The cations are connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of water mol­ecules, and C—H⋯O, C—H⋯Cl and π–π inter­actions [centroid-to-centroid distance = 3.6195 (8) Å] form layers parallel to the (100) plane. Furthermore, these layers are connected via π–π inter­actions [centroid-to-centroid distance = 3.8051 (9) Å] that further consolidate the crystal structure.

1. Chemical context

Imidazo[1,2-a]pyridine is considered to be the most important derivative in the imidazo­pyridine system, with many important biological activities (Ribeiro et al., 1998; Khalilov et al., 2021). These derivatives exhibit a number of inter­esting properties, such as anti­cancer, anti­fungal, anti-inflammatory, anti­bacterial, anti­protozoal, anti­pyretic and anti-infective, as well as analgesic and pain relief and sedative properties (Ribeiro et al., 1998; Almirante et al., 1965; Safavora et al., 2019). Imidazo[1,2-a]pyridine is present in various pharmaceutical products, such as zolpidem (used to treat insomnia), alpidem (sedative) (Lacerda et al., 2014), zolimidine (used to treat peptic ulcers) (Tyagi et al., 2012; Martins et al., 2017), olprinone (acute heart failure), saripidem (sedative), necopidem (sedative), soraprazan, miroprofen and minodronic acid (Kielesiński et al., 2015). Due to its importance in the pharmaceutical industry, much effort has been devoted to this heterocycle in order to develop an efficient, feasible and low-cost synthesis of imidazo[1,2-a]pyridine derivatives (Ribeiro et al., 1998). Besides their biological activity, the transition-metal complexes of imidazole ligands have been found to possess a wide variety of functional properties, for example, as catalysts, supra­molecular building blocks, analytical reagents, etc. (Gurbanov et al., 2020a ,b ; Kopylovich et al., 2011; Mahmudov et al., 2010, 2012). By the functionalization of the imidazole synthon their functional properties can be improved (Gurbanov et al., 2022; Mahmoudi et al., 2017a ,b , 2019). In addition, the functional groups on the imidazole ring can participate in various types of inter­molecular inter­actions (Mahmudov et al., 2022). Acetal-containing 2-chloro-2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)oxirane (1) or 1-chloro-3,3-dieth­oxy-1-(4-fluoro­phen­yl)propan-2-one (2) in reactions with bi- and polyfunctional nucleophiles (Fig. 1) turned out to be convenient in the mol­ecular design of various heterocyclic systems, in particular, heterocyclic carbaldehydes and their derivatives (Guseinov et al., 1994, 1995, 1998, 2006, 2017, 2020; Pistsov et al., 2017). We have found that electrophilic reagents (1 or 2) react with 2-amino-4-methyl­pyridine under certain conditions to transform into 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride (3) whose structure has been determined by NMR spectroscopy and X-ray diffraction methods (Fig. 1). 1.

Figure 1.

Figure 1

Reaction mechanism of the title compound.

2. Structural commentary

In the title salt (Fig. 2), the imidazo[1,2-a]pyridin-1-ium ring system (atoms N1/N4/C2/C3/C5–C8/C8A) of the cation is almost planar [maximum deviaition = −0.047 (2) Å for atom C3] and forms a dihedral angle of 61.81 (6)° with the plane of the fluoro­phenyl ring (C11–C16).

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The bond lengths and angles in the mol­ecule of the title salt are comparable with those of closely related structures detailed in Section 4 (Database survey).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, water mol­ecules form an Inline graphic (8) motif (Bernstein et al., 1995) parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds (Table 1 and Figs. 3 and 4). The cations are also connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of the water mol­ecules, and C—H⋯O, C—H⋯Cl and π–π inter­actions [Cg2⋯Cg2iv = 3.6195 (8) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1; Cg2 is a centroid of the six-membered ring (N4/C5–C8/C8A) of the imidazo[1,2-a]pyridin-1-ium ring system (N1/N4/C2/C3/C5–C8/C8A)] form layers parallel to the (100) plane (Fig. 5). Furthermore, these layers are connected to each other via π–π inter­actions [Cg3⋯Cg3vii = 3.8051 (9) Å; symmetry code: (vii) −x + 1, −y, −z + 2; Cg3 is a centroid of the fluoro­phenyl ring (C11–C16)] that consolidate the crystal structure (Fig. 6).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O18i 0.91 (2) 1.77 (2) 2.6754 (16) 174 (2)
O18—H18A⋯Cl1ii 0.87 (2) 2.24 (2) 3.1070 (11) 175 (2)
O18—H18B⋯Cl1iii 0.87 (2) 2.24 (2) 3.1142 (11) 178.0 (19)
C8—H8⋯Cl1iv 0.95 2.69 3.6431 (15) 176
C12—H12⋯Cl1v 0.95 2.71 3.5610 (16) 150
C13—H13⋯O10vi 0.95 2.41 3.057 (2) 125

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 3.

Figure 3

View of the mol­ecular packing along the a axis. N—H⋯O and O—H⋯Cl hydrogen bonds are shown as dashed lines.

Figure 4.

Figure 4

View of the mol­ecular packing along the b axis. Hydrogen bonds are depicted as in Fig. 3.

Figure 5.

Figure 5

View of the mol­ecular packing along the c axis. Hydrogen bonds are depicted as in Fig. 3.

Figure 6.

Figure 6

View of the π–π stacking inter­actions along the b axis in the unit cell.

The Hirshfeld surface mapped over d norm was generated using CrystalExplorer17.5 (Spackman et al., 2021) with a colour scale from −0.7283 a.u. for red to +1.3376 a.u. for blue. The front and rear views of the Hirshfeld surface mapped over d norm are depicted in Fig. 7. The bright-red circular spots on d norm indicate the presence of inter­molecular N1—H1⋯O18i, C8—H8⋯Cl1iv, C12—H12⋯Cl1v and C13—H13⋯O10vi inter­actions (Table 1). The percentage contributions from different inter­molecular inter­actions towards the formation of a three-dimensional Hirshfeld surface were computed using two-dimensional fingerprint calculations (Fig. 8).

Figure 7.

Figure 7

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale from −0.7283 to 1.3376 a.u.

Figure 8.

Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) F⋯H/H⋯F inter­actions. d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

Fig. 8 shows the full two-dimensional fingerprint plots for the mol­ecule and those delineated into the major contacts. H⋯H inter­actions [Fig. 8(b)] are the major contributor (35.2%) to the crystal packing, with C⋯H/H⋯C [Fig. 8(c); 19.0%], O⋯H/H⋯O [Fig. 8(d); 15.5%] and F⋯H/H⋯F [Fig. 8(e); 9.9%] inter­actions representing the next highest contributions. The percentage contributions of comparatively weaker inter­actions are C⋯C (4.6%), N⋯H/H⋯N (2.8%), F⋯O/O⋯F (1.5%), Cl⋯C/C⋯Cl (1.3%), Cl⋯H/H⋯Cl (1.3%), N⋯C/C⋯N (1.3%), F⋯F (1.2%), F⋯C/C⋯F (1.1%) and O⋯O (0.1%). Relevant short inter­molecular atomic contacts are summarized in Table 2.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H13⋯O10 2.41 x + 1, y − 1, z
F1⋯H17C 2.78 x, y − 1, z + 1
H9⋯F1 2.79 x + 1, −y, −z + 2
H9⋯O10 2.71 x, −y + 1, −z + 2
H16⋯Cl1 3.04 x, y, z
H17B⋯C2 3.02 x + 1, −y + 1, −z + 1
H5⋯C6 3.02 x + 1, −y, −z + 1
H17A⋯O18 2.78 x + 1, −y + 1, −z + 1
H8⋯Cl1 2.69 x, −y + 1, −z + 1
H15⋯C9 3.08 x, −y, −z + 2
H12⋯Cl1 2.71 x + 1, y, z
H5⋯O18 2.76 x, y − 1, z
Cl1⋯H6 2.94 x + 1, −y, −z + 1
H18A⋯Cl1 2.24 x + 1, y + 1, z
O18⋯H1 1.77 x + 1, y, z

The results show that the H⋯H (35.2%) contacts give the major contribution to the crystal packing, and that the C⋯H/H⋯C (19.0%), O⋯H/H⋯O (15.5%) and F⋯H/H⋯F (9.9%) contacts also give a significant contribution to the total area of the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for compounds most closely related to the imidazo[1,2-a]pyridin-1-ium unit of the title compound gave the following hits: refcodes LESMAZ (Yin, 2013), UREPIR (Nichol et al., 2011), ABAJOE (Rybakov & Babaev, 2011), BIZWAI02 (Airoldi et al., 2015), UREYIA (Türkyılmaz et al., 2011) and NEQPOP (Qiao et al., 2006).

In the crystal of LESMAZ, the cations and anions are linked into chains parallel to [021] by O—H⋯Cl and N—H⋯Cl hydrogen bonds. In the crystal of UREPIR, N—H⋯O inter­actions form a one-dimensional chain, which propagates in the b-axis direction. C—H⋯O inter­actions are also found in the crystal packing. The crystal structure of ABAJOE is consolidated by weak C—H⋯O and C—H⋯Cl inter­actions involving the ‘olate’ O atom and the Cl atom attached to the benzoyl group as acceptors. In the crystal of BIZWAI02, mol­ecules are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and π–π inter­actions [centroid-to-centroid distance = 3.5822 (11) Å], forming a three-dimensional structure. In the crystal of UREYIA, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid separation = 3.642 (3) Å]. In the crystal of NEQPOP, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into two-dimensional layers.

5. Synthesis and crystallization

A solution of equimolar amounts of 2-amino­pyridine (410 mg, 3.8 mmol) and 2-chloro-2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)oxirane (1) or 1-chloro-3,3-dieth­oxy-1-(4-fluoro­phen­yl) propan-2-one (2) (1.05 g, 3.8 mmol) in 25 ml of 95% aqueous ethanol was heated at reflux for 8 h. The solvent was removed in vacuo. After purification by column chromatography using a chloro­form/ethyl acetate mixture (3:1 v/v), 2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)imidazo[1,2-a]pyridine was ob­tain­ed as a white powder. Gaseous HCl was passed through a solution of 2-(di­eth­oxy­meth­yl)-3-(4-fluoro­phen­yl)imidazo[1,2-a]pyridine in chloro­form, leading to the main product, 3-(4-fluoro­phen­yl)-2-formyl-7-methyl­imidazo[1,2-a]pyridin-1-ium chloride (3) in the form of a white precipitate; this was insoluble in chloro­form and was filtered off and recrystallized from aceto­nitrile (Fig. 1). Yield 0.61 g (55%); m.p. 509–510 K. Analysis calculated (%) for C15H12ClFN2O: C 70.58, H 4.74, F 7.44, N 10.97, O 6.27; found: C 70.60, H 4.78, F 7.42, N 10.93, O 6.27. 1H NMR (300 MHz, DMSO-d 6): δ 2.54 (s, 3H, CH3), 7.28 (d, J = 6.6 Hz, 1H, 6CH), 7.55 (dd, J = 8.8, 5.5 Hz, 2H, Ar), 7.75 (s, 1H, NH), 7.90 (dd, J = 8.6, 5.5 Hz, 2H, Ar), 8.35 (s, 1H, 8CH), 8.47 (d, J = 7.1 Hz, 1H, 5CH), 9.85 (s, 1H, CHO). 13C NMR (200 MHz, DMSO-d 6): δ 21.27, 111.92, 116.44, 116.87, 119.67, 120.02, 126.18, 130.39, 131.39, 133.59 (d, J = 35 Hz, CF), 141.40, 147.07, 161.11, 166.06, 182.45. ESI–MS: m/z: 255.0928 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atom and the H atoms of the water mol­ecule were located in a difference Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms (C—H = 0.95–0.98 Å), with U iso(H) = 1.2U eq(C) for aromatic H atoms and 1.5U eq(C) for methyl H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C15H12FN2O+·Cl·H2O
M r 308.73
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.45681 (13), 8.41737 (10), 12.8928 (2)
α, β, γ (°) 74.0382 (12), 73.7634 (14), 72.7034 (13)
V3) 725.40 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.50
Crystal size (mm) 0.33 × 0.19 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.404, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15845, 3082, 3033
R int 0.027
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.086, 1.03
No. of reflections 3082
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2019 (Sheldrick, 2015a ), SHELXL2019 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007272/jy2034sup1.cif

e-79-00899-sup1.cif (474.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007272/jy2034Isup2.hkl

e-79-00899-Isup2.hkl (246.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007272/jy2034Isup3.cml

CCDC reference: 2289534

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author’s contributions are as follows: conceptualization by FIG, MA and AB; synthesis by VOO, PVS, YLS and AIS; X-ray analysis by PVS, AIS and STÇ; writing (review and editing of the manuscript) by FIG, MA and AB; supervision by FIG, MA and AB.

supplementary crystallographic information

Crystal data

C15H12FN2O+·Cl·H2O Z = 2
Mr = 308.73 F(000) = 320
Triclinic, P1 Dx = 1.413 Mg m3
a = 7.45681 (13) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.41737 (10) Å Cell parameters from 11896 reflections
c = 12.8928 (2) Å θ = 3.6–77.3°
α = 74.0382 (12)° µ = 2.50 mm1
β = 73.7634 (14)° T = 100 K
γ = 72.7034 (13)° Prism, colorless
V = 725.40 (2) Å3 0.33 × 0.19 × 0.15 mm

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector 3082 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3033 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.0000 pixels mm-1 θmax = 77.9°, θmin = 3.7°
ω scans h = −9→9
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2023) k = −10→9
Tmin = 0.404, Tmax = 1.000 l = −16→16
15845 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4038P] where P = (Fo2 + 2Fc2)/3
3082 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.01542 (4) 0.11097 (4) 0.64700 (3) 0.02403 (11)
F1 0.56045 (14) −0.35098 (11) 1.02878 (8) 0.0367 (2)
O18 0.90723 (15) 0.80467 (12) 0.61002 (9) 0.0241 (2)
N4 0.37156 (15) 0.27422 (14) 0.62115 (9) 0.0190 (2)
N1 0.14182 (17) 0.49767 (15) 0.65794 (10) 0.0215 (2)
C8A 0.26290 (18) 0.42655 (16) 0.57537 (11) 0.0196 (3)
C11 0.37885 (19) 0.08741 (17) 0.81151 (11) 0.0210 (3)
C5 0.51012 (19) 0.17210 (16) 0.55569 (12) 0.0214 (3)
H5 0.586532 0.067821 0.587952 0.026*
C12 0.5714 (2) 0.03302 (17) 0.81846 (11) 0.0233 (3)
H12 0.660070 0.098082 0.773040 0.028*
C3 0.30886 (19) 0.24618 (17) 0.73582 (11) 0.0208 (3)
C7 0.4192 (2) 0.37812 (17) 0.39448 (11) 0.0228 (3)
C2 0.16899 (19) 0.38788 (17) 0.75689 (11) 0.0217 (3)
C8 0.28524 (19) 0.48118 (17) 0.46032 (11) 0.0215 (3)
H8 0.209704 0.586666 0.428855 0.026*
C14 0.5015 (2) −0.20644 (18) 0.95627 (12) 0.0267 (3)
C16 0.2482 (2) −0.00887 (19) 0.87709 (12) 0.0271 (3)
H16 0.117247 0.027457 0.871462 0.032*
C6 0.5351 (2) 0.22342 (17) 0.44449 (12) 0.0232 (3)
H6 0.631903 0.154967 0.398747 0.028*
C13 0.6343 (2) −0.11584 (18) 0.89146 (12) 0.0256 (3)
H13 0.765513 −0.154250 0.896619 0.031*
C17 0.4406 (2) 0.4222 (2) 0.27152 (12) 0.0295 (3)
H17A 0.374708 0.355153 0.250243 0.044*
H17B 0.577414 0.396555 0.235805 0.044*
H17C 0.383705 0.543651 0.248116 0.044*
C15 0.3103 (2) −0.1578 (2) 0.95051 (12) 0.0303 (3)
H15 0.223073 −0.224471 0.995677 0.036*
C9 0.0719 (2) 0.4320 (2) 0.86403 (12) 0.0305 (3)
H9 0.092957 0.349329 0.929217 0.037*
H18A 0.937 (3) 0.887 (3) 0.6243 (19) 0.046 (6)*
H18B 0.926 (3) 0.830 (3) 0.538 (2) 0.045 (6)*
H1 0.059 (3) 0.602 (3) 0.6466 (17) 0.042 (5)*
O10 −0.0336 (2) 0.56891 (18) 0.87279 (11) 0.0572 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02505 (17) 0.02388 (17) 0.02491 (17) −0.00803 (12) −0.00593 (12) −0.00495 (12)
F1 0.0455 (6) 0.0280 (5) 0.0283 (5) −0.0034 (4) −0.0120 (4) 0.0055 (4)
O18 0.0284 (5) 0.0197 (5) 0.0241 (5) −0.0053 (4) −0.0058 (4) −0.0045 (4)
N4 0.0200 (5) 0.0177 (5) 0.0196 (5) −0.0050 (4) −0.0035 (4) −0.0047 (4)
N1 0.0221 (5) 0.0188 (5) 0.0217 (6) −0.0011 (4) −0.0052 (4) −0.0050 (4)
C8A 0.0195 (6) 0.0174 (6) 0.0228 (6) −0.0051 (5) −0.0046 (5) −0.0048 (5)
C11 0.0231 (6) 0.0203 (6) 0.0189 (6) −0.0031 (5) −0.0039 (5) −0.0057 (5)
C5 0.0201 (6) 0.0178 (6) 0.0265 (7) −0.0047 (5) −0.0032 (5) −0.0068 (5)
C12 0.0236 (6) 0.0232 (6) 0.0216 (6) −0.0041 (5) −0.0030 (5) −0.0060 (5)
C3 0.0214 (6) 0.0215 (6) 0.0205 (6) −0.0060 (5) −0.0045 (5) −0.0048 (5)
C7 0.0267 (7) 0.0225 (6) 0.0220 (6) −0.0126 (5) −0.0023 (5) −0.0048 (5)
C2 0.0218 (6) 0.0223 (6) 0.0202 (6) −0.0044 (5) −0.0047 (5) −0.0036 (5)
C8 0.0245 (6) 0.0187 (6) 0.0227 (6) −0.0070 (5) −0.0064 (5) −0.0031 (5)
C14 0.0356 (8) 0.0216 (7) 0.0194 (6) −0.0015 (6) −0.0077 (6) −0.0026 (5)
C16 0.0249 (7) 0.0286 (7) 0.0261 (7) −0.0068 (6) −0.0051 (5) −0.0032 (6)
C6 0.0242 (6) 0.0218 (6) 0.0247 (7) −0.0073 (5) −0.0006 (5) −0.0094 (5)
C13 0.0260 (7) 0.0250 (7) 0.0235 (7) 0.0007 (5) −0.0069 (5) −0.0075 (5)
C17 0.0375 (8) 0.0301 (7) 0.0219 (7) −0.0135 (6) −0.0021 (6) −0.0054 (6)
C15 0.0330 (8) 0.0305 (8) 0.0244 (7) −0.0113 (6) −0.0036 (6) 0.0006 (6)
C9 0.0306 (7) 0.0321 (8) 0.0227 (7) 0.0010 (6) −0.0039 (6) −0.0073 (6)
O10 0.0698 (10) 0.0467 (8) 0.0304 (6) 0.0263 (7) −0.0082 (6) −0.0152 (6)

Geometric parameters (Å, º)

F1—C14 1.3542 (16) C7—C8 1.3734 (19)
O18—H18A 0.86 (2) C7—C6 1.428 (2)
O18—H18B 0.87 (2) C7—C17 1.4988 (19)
N4—C8A 1.3719 (17) C2—C9 1.4605 (19)
N4—C5 1.3791 (17) C8—H8 0.9500
N4—C3 1.3955 (17) C14—C13 1.377 (2)
N1—C8A 1.3411 (17) C14—C15 1.379 (2)
N1—C2 1.3811 (17) C16—H16 0.9500
N1—H1 0.92 (2) C16—C15 1.389 (2)
C8A—C8 1.4042 (19) C6—H6 0.9500
C11—C12 1.3920 (19) C13—H13 0.9500
C11—C3 1.4709 (18) C17—H17A 0.9800
C11—C16 1.3973 (19) C17—H17B 0.9800
C5—H5 0.9500 C17—H17C 0.9800
C5—C6 1.354 (2) C15—H15 0.9500
C12—H12 0.9500 C9—H9 0.9500
C12—C13 1.387 (2) C9—O10 1.2011 (19)
C3—C2 1.3654 (19)
H18A—O18—H18B 103 (2) C8A—C8—H8 120.9
C8A—N4—C5 121.11 (12) C7—C8—C8A 118.26 (12)
C8A—N4—C3 108.76 (11) C7—C8—H8 120.9
C5—N4—C3 130.04 (11) F1—C14—C13 118.85 (13)
C8A—N1—C2 108.37 (11) F1—C14—C15 118.03 (13)
C8A—N1—H1 123.1 (13) C13—C14—C15 123.12 (13)
C2—N1—H1 128.5 (13) C11—C16—H16 120.1
N4—C8A—C8 121.05 (12) C15—C16—C11 119.86 (13)
N1—C8A—N4 108.00 (11) C15—C16—H16 120.1
N1—C8A—C8 130.92 (12) C5—C6—C7 121.48 (12)
C12—C11—C3 121.05 (12) C5—C6—H6 119.3
C12—C11—C16 120.14 (13) C7—C6—H6 119.3
C16—C11—C3 118.81 (12) C12—C13—H13 120.9
N4—C5—H5 120.7 C14—C13—C12 118.22 (13)
C6—C5—N4 118.69 (12) C14—C13—H13 120.9
C6—C5—H5 120.7 C7—C17—H17A 109.5
C11—C12—H12 119.9 C7—C17—H17B 109.5
C13—C12—C11 120.26 (13) C7—C17—H17C 109.5
C13—C12—H12 119.9 H17A—C17—H17B 109.5
N4—C3—C11 123.90 (11) H17A—C17—H17C 109.5
C2—C3—N4 105.71 (11) H17B—C17—H17C 109.5
C2—C3—C11 130.28 (12) C14—C15—C16 118.39 (14)
C8—C7—C6 119.34 (13) C14—C15—H15 120.8
C8—C7—C17 121.11 (13) C16—C15—H15 120.8
C6—C7—C17 119.51 (13) C2—C9—H9 118.8
N1—C2—C9 122.80 (12) O10—C9—C2 122.45 (14)
C3—C2—N1 109.06 (12) O10—C9—H9 118.8
C3—C2—C9 127.88 (13)
F1—C14—C13—C12 −179.27 (12) C12—C11—C3—N4 62.54 (18)
F1—C14—C15—C16 179.42 (13) C12—C11—C3—C2 −121.88 (16)
N4—C8A—C8—C7 −0.07 (19) C12—C11—C16—C15 1.0 (2)
N4—C5—C6—C7 −1.2 (2) C3—N4—C8A—N1 3.08 (14)
N4—C3—C2—N1 1.89 (15) C3—N4—C8A—C8 −175.22 (12)
N4—C3—C2—C9 −172.39 (14) C3—N4—C5—C6 175.22 (12)
N1—C8A—C8—C7 −177.93 (13) C3—C11—C12—C13 179.08 (12)
N1—C2—C9—O10 −2.3 (3) C3—C11—C16—C15 −178.93 (13)
C8A—N4—C5—C6 −1.22 (18) C3—C2—C9—O10 171.26 (17)
C8A—N4—C3—C11 173.45 (12) C2—N1—C8A—N4 −1.87 (15)
C8A—N4—C3—C2 −3.04 (14) C2—N1—C8A—C8 176.21 (13)
C8A—N1—C2—C3 −0.05 (15) C8—C7—C6—C5 3.0 (2)
C8A—N1—C2—C9 174.58 (13) C16—C11—C12—C13 −0.8 (2)
C11—C12—C13—C14 −0.2 (2) C16—C11—C3—N4 −117.56 (15)
C11—C3—C2—N1 −174.29 (13) C16—C11—C3—C2 58.0 (2)
C11—C3—C2—C9 11.4 (2) C6—C7—C8—C8A −2.29 (19)
C11—C16—C15—C14 −0.1 (2) C13—C14—C15—C16 −1.0 (2)
C5—N4—C8A—N1 −179.80 (11) C17—C7—C8—C8A 175.47 (12)
C5—N4—C8A—C8 1.90 (18) C17—C7—C6—C5 −174.78 (13)
C5—N4—C3—C11 −3.3 (2) C15—C14—C13—C12 1.2 (2)
C5—N4—C3—C2 −179.83 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O18i 0.91 (2) 1.77 (2) 2.6754 (16) 174 (2)
O18—H18A···Cl1ii 0.87 (2) 2.24 (2) 3.1070 (11) 175 (2)
O18—H18B···Cl1iii 0.87 (2) 2.24 (2) 3.1142 (11) 178.0 (19)
C8—H8···Cl1iv 0.95 2.69 3.6431 (15) 176
C12—H12···Cl1v 0.95 2.71 3.5610 (16) 150
C13—H13···O10vi 0.95 2.41 3.057 (2) 125

Symmetry codes: (i) x−1, y, z; (ii) x+1, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, y, z; (vi) x+1, y−1, z.

References

  1. Airoldi, A., Bettoni, P., Donnola, M., Calestani, G. & Rizzoli, C. (2015). Acta Cryst. E71, 51–54. [DOI] [PMC free article] [PubMed]
  2. Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  9. Guseinov, F. I. (1994). Russ. J. Org. Chem. 30, 360–365.
  10. Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.
  11. Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.
  12. Guseinov, F. I. & Tagiev, S. Sh. (1995). Russ. J. Org. Chem. 31, 86–91.
  13. Guseinov, F. I. & Yudina, N. A. (1998). Chem. Heterocycl. Compd. 34, 115–120.
  14. Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.
  15. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  16. Kielesiński, Ł., Tasior, M. & Gryko, D. T. (2015). Org. Chem. Front. 2, 21–28.
  17. Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.
  18. Lacerda, R. B., Sales, N. M., da Silva, L. L., Tesch, R., Miranda, A. L. P., Barreiro, E. J., Fernandes, P. D. & Fraga, C. A. M. (2014). PLoS One, 9, e91660. [DOI] [PMC free article] [PubMed]
  19. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  20. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  21. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.
  22. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
  23. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  24. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  25. Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.
  26. Nichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o1224. [DOI] [PMC free article] [PubMed]
  27. Pistsov, M. F., Lavrova, O. M., Saifutdinov, A. M., Burangulova, R. N., Kustov, L. M., Guseinov, F. I. & Musin, R. Z. (2017). Russ. J. Gen. Chem. 87, 2887–2890.
  28. Qiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634–o4635.
  29. Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225–235.
  30. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  31. Rybakov, V. B. & Babaev, E. V. (2011). Acta Cryst. E67, o2814. [DOI] [PMC free article] [PubMed]
  32. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
  33. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  34. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  35. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  36. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  37. Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282. [DOI] [PMC free article] [PubMed]
  38. Tyagi, V., Khan, S., Bajpai, V., Gauniyal, H. M., Kumar, B. & Chauhan, P. M. S. (2012). J. Org. Chem. 77, 1414–1421. [DOI] [PubMed]
  39. Yin, W.-Y. (2013). Acta Cryst. E69, o211. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007272/jy2034sup1.cif

e-79-00899-sup1.cif (474.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007272/jy2034Isup2.hkl

e-79-00899-Isup2.hkl (246.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007272/jy2034Isup3.cml

CCDC reference: 2289534

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES