Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 22;8(Pt 9):x230801. doi: 10.1107/S2414314623008015

Tetra­kis(μ-acetato-κ2 O:O′)bis­[(tetra­hydro­furan-κO)chromium(II)]

Christian Heiser a, Kurt Merzweiler a,*
Editor: M Weilb
PMCID: PMC10561221  PMID: 37818475

Centrosymmetric [Cr2(OAc)4(THF)2] consists of two CrII atoms that are bridged by four acetate ions to yield a typical paddle-wheel structure. Furthermore, each chromium atom bears an axially bound THF ligand to give a square-pyramidal coordination.

Keywords: crystal structure, chromium, acetate, tetra­hydro­furane, paddle wheel

Abstract

The title compound, [Cr2(C2H3O2)4(C4H8O)2] or [Cr2(OAc)4(THF)2] (OAc is acetate, THF is tetra­hydro­furan), was obtained by recrystallization of anhydrous chromium(II) acetate [Cr2(OAc)4] from hot tetra­hydro­furan. The centrosymmetric complex forms monoclinic crystals, space group C2/c, and consists of two CrII atoms bridged by four acetate ligands. Additionally, each CrII atom is coordinated by a terminal THF ligand, which leads to a square-pyramidal coordination. graphic file with name x-08-x230801-scheme1-3D1.jpg

Structure description

Chromium(II) acetate was discovered as early as 1844 by Peligot (Peligot, 1844). Determinations of the crystal structure of the dihydrate date back to 1953 (van Niekerk et al., 1953) and 1971 (Cotton et al., 1971). A few years later, the crystal structure of anhydrous chromium(II) acetate was reported (Cotton et al., 1977). Chromium(II) acetate is frequently used as the starting compound for chromium(II) complexes (Cotton et al., 2005). Over the past decades, a large number of chromium(II) acetate complexes with different ligands L have been investigated. Typical compounds are of the type [Cr2(OAc)4 L 2]. In most cases, L represents a nitro­gen ligand such as pyridine (Cotton & Felthouse, 1980), aceto­nitrile (Cotton et al., 2000) or 4,4′-bi­pyridine (Cotton & Felthouse, 1980). However, there are also examples with oxygen donor ligands, among them the dihydrate [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953) and the analogous derivative with acetic acid ligands [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978). Crystal structures of chromium(II) acetate complexes with common ether donor ligands have not yet been reported. This is in contrast to other chromium(II) carboxyl­ates, where 18 complexes with ether donors have been characterized by crystal-structure determinations. Apart from some di­meth­oxy­ethane (DME) and diethyl ether complexes such as [Cr2(9-anthracene­carboxyl­ate)4(DME)] n (Cotton et al., 1978) and [Cr2(OOC—CF3)4(OEt2)2] (Cotton et al., 1978), this area is dominated by THF complexes. [Cr2{OOC—CH(PPh2)2}4(THF)2] (Kulangara et al., 2012), [Cr2(OOC—CPh3)4(THF)2] (Cotton & Thompson, 1981) and [Cr2(OOC—C6H4-p-F)4(THF)2] (Huang et al., 2019) may serve as representative examples.

Here we report on the crystal structure of [Cr2(OAc)4(THF)2] (1). Compound 1 was synthesized by dissolution of anhydrous chromium(II) acetate in hot THF. Upon cooling to room temperature, the product precipitated in the form of dark-red crystals that easily loose THF when separated from the mother liquor.

The crystal structure of 1 consists of discrete [Cr2(OAc)4(THF)2] mol­ecules that possess crystallographic Inline graphic symmetry. The {Cr2(OAc)4} core displays a characteristic paddle-wheel structure as was observed in the prototypes [Cr2(OAc)4] (Cotton et al., 1977) and [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953). Apart from four acetate O atoms, each CrII atom binds to the O atom of one THF ligand. This leads to a square-pyramidal coordination environment for the CrII atoms. A Cr—Cr contact completes the coordination sphere (Fig. 1). Compound 1 exhibits Cr—O(OAc) distances in the range from 2.0083 (13) to 2.0175 (13) Å (Table 1). The O(OAc)—Cr—O(OAc) angles are 89.37 (6)–90.40 (6)° for the cis arranged O atoms and 177.16 (5)–177.24 (5)° for the trans positions. The observed bond lengths and angles are typical for [Cr2(OAc)4 L 2] compounds. According to the Cambridge Structural Database (Groom et al., 2016), the Cr—O(OAc) distances vary from 1.988 to 2.036 Å with a median value of 2.014 Å (14 entries, 34 data). The cis-O(OAc)—Cr—O(OAc) angles range between 87.13 and 92.06° with a median of 89.80° (13 entries, 66 data) and the trans-O(OAc)—Cr—O(OAc) angles are distributed between 173.76 and 178.99° with a median value of 176.65° (14 entries, 25 data).

Figure 1.

Figure 1

Mol­ecular structure of 1 in the crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Cr—Cri 2.3242 (6) O4—C3 1.261 (2)
Cr—O4i 2.0121 (14) O2—C1 1.262 (2)
Cr—O2i 2.0146 (13) O1—C1 1.263 (2)
Cr—O1 2.0083 (13) O5—C5 1.447 (2)
Cr—O5 2.3267 (13) O5—C8 1.444 (2)
Cr—O3 2.0175 (13) O3—C3 1.262 (2)
       
O4i—Cr—O2i 90.40 (6) O1—Cr—O4i 89.91 (6)
O4i—Cr—O5 89.29 (5) O1—Cr—O2i 177.24 (5)
O4i—Cr—O3 177.16 (5) O1—Cr—O5 94.38 (5)
O2i—Cr—O5 88.36 (5) O1—Cr—O3 90.19 (6)
O2i—Cr—O3 89.37 (6) O3—Cr—O5 93.53 (5)

Symmetry code: (i) Inline graphic .

The Cr—O(THF) distance is 2.3267 (13) Å. [Cr2(OAc)4(H2O)2] (Cotton et al., 1971) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978) exhibit corresponding Cr—O distances of 2.272 (3) and 2.306 (3) Å, respectively, for the axially bound ligand. Chromium(II) carboxyl­ates with THF ligands show Cr—O(THF) distances from 2.228 to 2.316 Å with a median of 2.258 Å (14 entries, 14 data).

Compound 1 displays a Cr—Cr distance of 2.3242 (6) Å. This is very close to the median value of 2.337 Å that was obtained from 16 data (14 entries) of the CSD database. Generally, the Cr—Cr distances in [Cr2(OAc)4 L 2] complexes vary over a relatively large range from 2.270 to 2.452 Å. In [Cr2(OAc)4(H2O)2] (Cotton et al., 1971) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978), the Cr—Cr distances are 2.362 (1) and 2.300 (1) Å.

Regarding supra­molecular inter­actions, a Hirshfeld surface analysis with CrystalExplorer (Spackman et al., 2021) reveals weak C—H⋯O inter­actions (Table 2) between the acetate methyl group and acetate O atoms of neighbouring mol­ecules (Fig. 2). As a result, linear chains along [101] are formed (Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1ii 0.98 2.60 3.472 (3) 148

Symmetry code: (ii) Inline graphic .

Figure 2.

Figure 2

View of the Hirshfeld surface of 1 mapped over d norm in the range of −0.062 to 1.826 au. Red-colored surfaces show short contacts, dashed green lines indicate hydrogen-bonding inter­actions.

Figure 3.

Figure 3

Crystal structure of 1, with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A suspension of chromium(II) acetate (0.5 g; 1.5 mmol) in THF (20 ml) was refluxed for 2 h. Afterwards, the hot solution was filtered and the solid residue further extracted with hot THF (2 × 5 ml). THF was evaporated under reduced pressure to give 20 ml of a concentrated solution. Upon storage at 248 K, the product precipitated after several days. The crystalline compound was filtered off and dried under reduced pressure. Yield: 0.57 g (80%). The chromium content was determined photometrically as chromate (Lange & Vejdělek, 1978). Analysis for C16H28Cr2O10 (484.38): calculated: Cr 21.5%, found: Cr 21.7%; IR (ATR; in cm−1): ν = 2962 w, 2937 w, 2896 w, 2867 w, 1581 m, 1482 m, 1435 s, 1351 m, 1297 m, 1249 w, 1233 w, 1178 w, 1035 m, 950 m, 916 m, 878 m, 672 s, 626 m, 583 m, 557 m, 542 m, 495 m, 395 s, 346 m, 297 s, 276 m, 229 m, 208 m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [Cr2(C2H3O2)4(C4H8O)2]
M r 484.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 213
a, b, c (Å) 20.833 (4), 9.6413 (15), 15.654 (3)
β (°) 136.283 (10)
V3) 2172.9 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.19 × 0.16 × 0.14
 
Data collection
Diffractometer Stoe IPDSII
Absorption correction Integration [Absorption correction with X-RED32 (Stoe, 2009) by Gaussian integration analogous to Coppens (1970)]
T min, T max 0.736, 0.873
No. of measured, independent and observed [I > 2σ(I)] reflections 8042, 2297, 2085
R int 0.025
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.084, 1.06
No. of reflections 2297
No. of parameters 129
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.25

Computer programs: X-AREA (Stoe, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2019 and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623008015/wm4196sup1.cif

x-08-x230801-sup1.cif (279.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623008015/wm4196Isup2.hkl

x-08-x230801-Isup2.hkl (184.5KB, hkl)

CCDC reference: 2294928

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Andreas Kiowski for technical support.

full crystallographic data

Crystal data

[Cr2(C2H3O2)4(C4H8O)2] F(000) = 1008
Mr = 484.38 Dx = 1.481 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.833 (4) Å Cell parameters from 10024 reflections
b = 9.6413 (15) Å θ = 1.9–27.1°
c = 15.654 (3) Å µ = 1.05 mm1
β = 136.283 (10)° T = 213 K
V = 2172.9 (7) Å3 Block, clear red
Z = 4 0.19 × 0.16 × 0.14 mm

Data collection

Stoe IPDSII diffractometer 2297 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2085 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.025
Detector resolution: 6.67 pixels mm-1 θmax = 26.8°, θmin = 2.5°
rotation method, ω scans h = −26→26
Absorption correction: integration [Absorption correction with X-Red32 (Stoe, 2009) by Gaussian integration analogous to Coppens (1970)] k = −12→11
Tmin = 0.736, Tmax = 0.873 l = −19→19
8042 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0467P)2 + 2.3382P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2297 reflections Δρmax = 0.54 e Å3
129 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr 0.26094 (2) 0.66145 (3) 0.46117 (2) 0.02544 (11)
O4 0.14551 (9) 0.92201 (13) 0.36838 (12) 0.0342 (3)
O2 0.34181 (9) 0.94502 (13) 0.57992 (12) 0.0333 (3)
O1 0.36182 (9) 0.77547 (14) 0.50418 (12) 0.0345 (3)
O5 0.28145 (10) 0.47338 (14) 0.38969 (12) 0.0372 (3)
O3 0.16586 (9) 0.75243 (13) 0.29340 (11) 0.0323 (3)
C1 0.38244 (12) 0.8921 (2) 0.55545 (16) 0.0318 (4)
C7 0.2675 (2) 0.2300 (2) 0.3690 (3) 0.0598 (7)
H7A 0.256700 0.153198 0.399458 0.072*
H7B 0.302134 0.193893 0.352458 0.072*
C4 0.05644 (14) 0.9286 (2) 0.15474 (18) 0.0437 (5)
H4A 0.028412 1.008695 0.156494 0.065*
H4B 0.008049 0.860582 0.094730 0.065*
H4C 0.086525 0.959150 0.130761 0.065*
C6 0.17708 (19) 0.2950 (3) 0.2548 (2) 0.0557 (6)
H6A 0.149691 0.245473 0.179140 0.067*
H6B 0.131657 0.296526 0.258606 0.067*
C2 0.46056 (14) 0.9713 (2) 0.5899 (2) 0.0447 (5)
H2A 0.451210 1.070872 0.590081 0.067*
H2B 0.461851 0.951885 0.529713 0.067*
H2C 0.519618 0.942836 0.672441 0.067*
C5 0.20714 (15) 0.4391 (2) 0.25966 (19) 0.0396 (4)
H5A 0.229504 0.441548 0.221381 0.048*
H5B 0.154969 0.505239 0.215539 0.048*
C3 0.12762 (12) 0.86336 (19) 0.28110 (16) 0.0296 (4)
C8 0.31894 (19) 0.3462 (2) 0.4601 (2) 0.0537 (6)
H8A 0.310317 0.343141 0.514527 0.064*
H8B 0.386159 0.339342 0.512128 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr 0.02569 (16) 0.02424 (17) 0.02535 (16) 0.00141 (10) 0.01810 (14) 0.00139 (10)
O4 0.0342 (7) 0.0303 (6) 0.0301 (6) 0.0073 (5) 0.0206 (6) 0.0046 (5)
O2 0.0330 (6) 0.0300 (6) 0.0358 (7) −0.0039 (5) 0.0245 (6) −0.0014 (5)
O1 0.0324 (6) 0.0367 (7) 0.0387 (7) −0.0011 (5) 0.0272 (6) −0.0005 (6)
O5 0.0429 (7) 0.0283 (6) 0.0389 (7) 0.0034 (6) 0.0290 (6) −0.0013 (5)
O3 0.0353 (6) 0.0321 (6) 0.0276 (6) 0.0030 (5) 0.0221 (6) 0.0024 (5)
C1 0.0269 (8) 0.0356 (9) 0.0257 (8) −0.0001 (7) 0.0167 (7) 0.0068 (7)
C7 0.090 (2) 0.0343 (11) 0.0689 (16) 0.0016 (12) 0.0617 (16) 0.0012 (11)
C4 0.0388 (10) 0.0433 (11) 0.0299 (9) 0.0054 (9) 0.0185 (9) 0.0106 (8)
C6 0.0637 (15) 0.0443 (12) 0.0557 (14) −0.0147 (11) 0.0420 (13) −0.0109 (11)
C2 0.0333 (10) 0.0517 (12) 0.0432 (11) −0.0084 (9) 0.0257 (9) 0.0034 (9)
C5 0.0444 (11) 0.0372 (10) 0.0373 (10) 0.0029 (8) 0.0296 (9) −0.0014 (8)
C3 0.0245 (8) 0.0303 (8) 0.0264 (8) −0.0014 (7) 0.0159 (7) 0.0038 (7)
C8 0.0604 (14) 0.0347 (11) 0.0486 (13) 0.0132 (10) 0.0336 (12) 0.0067 (9)

Geometric parameters (Å, º)

Cr—Cri 2.3242 (6) C7—C8 1.492 (3)
Cr—O4i 2.0121 (14) C4—H4A 0.9800
Cr—O2i 2.0146 (13) C4—H4B 0.9800
Cr—O1 2.0083 (13) C4—H4C 0.9800
Cr—O5 2.3267 (13) C4—C3 1.506 (2)
Cr—O3 2.0175 (13) C6—H6A 0.9900
O4—C3 1.261 (2) C6—H6B 0.9900
O2—C1 1.262 (2) C6—C5 1.503 (3)
O1—C1 1.263 (2) C2—H2A 0.9800
O5—C5 1.447 (2) C2—H2B 0.9800
O5—C8 1.444 (2) C2—H2C 0.9800
O3—C3 1.262 (2) C5—H5A 0.9900
C1—C2 1.501 (3) C5—H5B 0.9900
C7—H7A 0.9900 C8—H8A 0.9900
C7—H7B 0.9900 C8—H8B 0.9900
C7—C6 1.506 (4)
Cri—Cr—O5 176.08 (4) H4A—C4—H4C 109.5
O4i—Cr—Cri 88.19 (4) H4B—C4—H4C 109.5
O4i—Cr—O2i 90.40 (6) C3—C4—H4A 109.5
O4i—Cr—O5 89.29 (5) C3—C4—H4B 109.5
O4i—Cr—O3 177.16 (5) C3—C4—H4C 109.5
O2i—Cr—Cri 88.66 (4) C7—C6—H6A 111.4
O2i—Cr—O5 88.36 (5) C7—C6—H6B 111.4
O2i—Cr—O3 89.37 (6) H6A—C6—H6B 109.2
O1—Cr—Cri 88.61 (4) C5—C6—C7 101.9 (2)
O1—Cr—O4i 89.91 (6) C5—C6—H6A 111.4
O1—Cr—O2i 177.24 (5) C5—C6—H6B 111.4
O1—Cr—O5 94.38 (5) C1—C2—H2A 109.5
O1—Cr—O3 90.19 (6) C1—C2—H2B 109.5
O3—Cr—Cri 88.98 (4) C1—C2—H2C 109.5
O3—Cr—O5 93.53 (5) H2A—C2—H2B 109.5
C3—O4—Cri 120.14 (11) H2A—C2—H2C 109.5
C1—O2—Cri 119.21 (12) H2B—C2—H2C 109.5
C1—O1—Cr 119.57 (12) O5—C5—C6 105.37 (17)
C5—O5—Cr 118.23 (11) O5—C5—H5A 110.7
C8—O5—Cr 118.74 (13) O5—C5—H5B 110.7
C8—O5—C5 108.56 (15) C6—C5—H5A 110.7
C3—O3—Cr 118.98 (11) C6—C5—H5B 110.7
O2—C1—O1 123.94 (17) H5A—C5—H5B 108.8
O2—C1—C2 118.42 (18) O4—C3—O3 123.71 (16)
O1—C1—C2 117.64 (18) O4—C3—C4 118.37 (17)
H7A—C7—H7B 109.0 O3—C3—C4 117.92 (17)
C6—C7—H7A 111.0 O5—C8—C7 106.84 (19)
C6—C7—H7B 111.0 O5—C8—H8A 110.4
C8—C7—H7A 111.0 O5—C8—H8B 110.4
C8—C7—H7B 111.0 C7—C8—H8A 110.4
C8—C7—C6 103.9 (2) C7—C8—H8B 110.4
H4A—C4—H4B 109.5 H8A—C8—H8B 108.6
Cri—O4—C3—O3 −0.4 (2) Cr—O3—C3—O4 0.2 (2)
Cri—O4—C3—C4 179.40 (13) Cr—O3—C3—C4 −179.60 (13)
Cri—O2—C1—O1 1.2 (2) C7—C6—C5—O5 −34.4 (2)
Cri—O2—C1—C2 −178.35 (12) C6—C7—C8—O5 −23.6 (3)
Cr—O1—C1—O2 −1.6 (2) C5—O5—C8—C7 1.9 (3)
Cr—O1—C1—C2 177.88 (12) C8—O5—C5—C6 20.7 (2)
Cr—O5—C5—C6 −118.42 (16) C8—C7—C6—C5 35.1 (3)
Cr—O5—C8—C7 140.80 (18)

Symmetry code: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4B···O1ii 0.98 2.60 3.472 (3) 148

Symmetry code: (ii) x−1/2, −y+3/2, z−1/2.

Funding Statement

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

  1. Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  3. Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671.
  4. Cotton, F. A., Extine, M. & Rice, G. W. (1978). Inorg. Chem. 17, 176–186.
  5. Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328–331.
  6. Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416–417.
  7. Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.
  8. Cotton, F. A., Rice, C. E. & Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704–4707.
  9. Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004–2009.
  10. Cotton, F. A. & Thompson, J. L. (1981). Inorg. Chem. 20, 1292–1296.
  11. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2019). Dalton Trans. 48, 908–914. [DOI] [PubMed]
  14. Kulangara, S. V., Mason, C., Juba, M., Yang, Y., Thapa, I., Gambarotta, S., Korobkov, I. & Duchateau, R. (2012). Organometallics, 31, 6438–6449.
  15. Lange, B. & Vejdělek, Z. J. (1978). Photometrische Analyse, 1st ed. Weinheim, New York: VCH.
  16. Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501–504.
  17. Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609–615.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  21. Stoe (2009). X-RED32. Stoe & Cie, Darmstadt, Germany.
  22. Stoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623008015/wm4196sup1.cif

x-08-x230801-sup1.cif (279.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623008015/wm4196Isup2.hkl

x-08-x230801-Isup2.hkl (184.5KB, hkl)

CCDC reference: 2294928

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES