Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 8;8(Pt 9):x230743. doi: 10.1107/S2414314623007435

N,N′-[1,4-Phenyl­enebis(imino­carbon­yl)]bis­(l-phenyl­alanine) tetra­hydro­furan disolvate

Manuel Stapf a,*, Anke Schwarzer a
Editor: S Bernèsb
PMCID: PMC10561225  PMID: 37818468

In the crystal structure of the title bis-urea derivative, the host mol­ecules are linked by N—H⋯O=C hydrogen bonds and C—H⋯O contacts with Inline graphic (6) and Inline graphic (7) ring motifs.

Keywords: crystal structure, urea, amino acid, hydrogen bonding, tetra­hydro­furan solvate

Abstract

The title compound, C26H26N4O6·2C4H8O, representing a bis-urea with terminal phenyl­alanine units, crystallized with two tetra­hydro­furan (THF) mol­ecules. The main mol­ecule is located on a crystallographic twofold axis, while the solvent mol­ecule is disordered over two positions, with occupancies of 0.571 (15) and 0.429 (15). The host mol­ecules are linked by N—H⋯O=C hydrogen bonds and C—H⋯O contacts with R 2 1(6) and R 2 1(7) ring motifs. The THF mol­ecules enclosed in the crystal are connected to the bis-urea compound via O—H⋯O and C—H⋯O inter­actions. graphic file with name x-08-x230743-scheme1-3D1.jpg

Structure description

Bis-urea compounds containing a central 1,4-phenyl­ene unit have been shown to be suitable mol­ecules for anion recognition (Stapf et al., 2015; Casula et al., 2016; Manna et al., 2018; Manna & Das, 2019, 2020; Das et al., 2020). In this context, we introduced compounds combining this scaffold and various amino acids [such as l-valine, l-leucine, l-proline, (R)-3-piperidine­carb­oxy­lic acid, l-threonine or even l-phenyl­alanine], whose amino group is part of the urea moiety, among them the title compound, possessing l-phenyl­alanine units (Stapf et al., 2015). Furthermore, we have already reported the crystal structure of a supra­molecular coordination polymer of the title compound with lead(II) (Stapf et al., 2012). In the present article, we describe the crystal structure of the tetra­hydro­furan (THF) disolvate.

The title compound was found to crystallize in the tetra­gonal space group I41 with half a mol­ecule of the bis-urea compound and one THF mol­ecule (Fig. 1), which is disordered over two positions (57:43). Within a single mol­ecule possessing a twofold rotation axis, the plane of the phenyl­ene unit includes a dihedral angle with the peripheral arene rings of 88.4 (1)° and with the planes of the urea moieties of 19.4 (2)°. This small angle may be associated with an intra­molecular C—H⋯O inter­action (H⋯O = 2.35 Å) between the phenyl­ene core and the urea moiety. Furthermore, the carb­oxy group is almost perpendicular to the central aromatic ring, showing a dihedral angle of 82.9 (1)°, and the phenyl­ene units of adjacent mol­ecules are oriented orthogonal with respect to each other.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, including the atom-numbering scheme. Atoms are drawn with displacement ellipsoids at the 50% probability level. The intra­molecular C—H⋯O inter­action, as well as the inter­molecular hydrogen bonding between the carb­oxy group and the THF mol­ecule, are shown as dashed lines. Both disordered parts (57:43) of the THF mol­ecule are displayed. Unlabelled atoms are generated by the symmetry operation −x + 1, −y, z.

The dominant inter­molecular inter­actions between urea moieties of neighbouring mol­ecules are inverse bifurcated hydrogen bonds of the N—H⋯O=C type [H⋯O = 2.08 (4) and 2.32 (3) Å; Table 1], which can be described by the graph set Inline graphic (6) (Etter, 1990; Fig. 2). Unlike in the previously published coordination polymer (Stapf et al., 2012), in which the urea groups form two-dimensional hydrogen-bridged ribbons (H⋯O = 2.06–2.26 Å), the structure presented here is characterized by supra­molecular chains [graph set C(4)]. The angle between the planes of adjacent urea moieties is 83.7 (1)°, thus they are nearly perpendicular to one other. Such a motif is also well known in the literature (for examples, see: Albrecht et al., 2002; Berkessel et al., 2006; Saxena et al., 2014; Shugrue et al., 2019). The N atoms do not act as acceptors for hydrogen bonds. Instead, the linkage of two adjacent mol­ecules is supported by the formation of C—H⋯O=C contacts (H⋯O = 2.55 and 2.70 Å) between the C—H groups of phenyl­alanine and an O atom of a carb­oxy group which acts as a bifurcated acceptor [graph set Inline graphic (7); Fig. 2].

Table 1. Hydrogen-bond geometry (Å, °).

Cg is defined as the centre of gravity of the rings: Cg1 is ring C1–C6 and Cg2 is C10/C11/C12/C10′/C11′/C12′, with primed atoms generated by the symmetry code (−x + 1, −y, z).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (4) 2.32 (3) 3.091 (3) 153 (3)
N2—H2N⋯O1i 0.88 (3) 2.08 (4) 2.937 (3) 163 (3)
O3—H3O⋯O4A ii 0.90 (3) 1.73 (3) 2.623 (7) 175 (7)
C5—H5⋯O2iii 0.95 2.55 3.464 (4) 161
C8—H8⋯O2iii 1.00 2.70 3.629 (4) 155
C11—H11⋯O1 0.95 2.35 2.916 (3) 118
C14A—H14B⋯O3iv 0.99 2.78 3.581 (18) 139
C16A—H16ACg1v 0.99 2.61 3.497 (8) 149
C16B—H16DCg1v 0.99 2.82 3.449 (10) 122
C17A—H17BCg2vi 0.99 3.00 3.574 (8) 118

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

Excerpt of the crystal packing showing the Inline graphic (6) and Inline graphic (7) ring motifs of the N—H⋯O=C and C—H⋯O=C(OH) inter­actions drawn as dashed lines. The THF mol­ecules and the H atoms not involved in the inter­actions have been omitted for clarity.

The crystal structure exhibits cavities which are occupied by THF mol­ecules requiring about 961 Å3 (corresponding to about 29% of the unit-cell volume). The cavities are bounded by the nonpolar phenyl­ene and arene units of the title compound. In addition, the carb­oxy groups point into the inter­ior of these cavities and form O—H⋯O hydrogen bonds with the THF O atom [H⋯O = 1.73 (3) Å]. Further stabilization of the mol­ecular network, each involving the THF mol­ecules, is realized by C—H⋯O contacts with the carb­oxy group of an adjacent mol­ecule (H⋯O = 2.78 Å) and weak C—H⋯π contacts (H⋯Cg = 2.61–3.00 Å) with the central benzene core or peripheral arene substituents.

Synthesis and crystallization

The synthetic and spectroscopic details for the title compound have been reported previously (Stapf et al., 2012, 2015). Single crystals suitable for X-ray analysis were obtained as colourless prisms by slow evaporation of a saturated solution of the bis-urea compound in tetra­hydro­furan.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms at N1 and N2 were located in a difference Fourier map and refined freely. The H atom at O3 was also located in the difference Fourier map but refined using a DFIX restraint at 0.84 (2) Å. Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å, and alkyl C—H = 1.00 Å). The U iso(H) values were fixed at 1.2 times the equivalent U eq value of the parent C atoms. The THF solvent mol­ecule is disordered over at least two positions [refined occupancies 0.571 (15) and 0.429 (15)]. Therefore, the solvent mol­ecule was refined using ISOR for C16A, C16B, C17A and C17B (approximate isotropic behaviour) and SADI (same distances over pairs of bonded atoms) restraints (Sheldrick, 2015b ). The absolute structure of the title compound has been assigned by reference to an unchanging chiral centre in the synthetic procedure, not by anomalous dispersion effects in the diffraction experiment.

Table 2. Experimental details.

Crystal data
Chemical formula C26H26N4O6·2C4H8O
M r 634.71
Crystal system, space group Tetragonal, I41
Temperature (K) 153
a, c (Å) 13.632 (4), 17.507 (6)
V3) 3253 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.10 × 0.05 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 25670, 3554, 3269
R int 0.028
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.107, 1.05
No. of reflections 3554
No. of parameters 266
No. of restraints 95
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.20

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), XP (Sheldrick, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007435/bh4077sup1.cif

x-08-x230743-sup1.cif (863KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007435/bh4077Isup2.hkl

x-08-x230743-Isup2.hkl (284KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007435/bh4077Isup3.cml

CCDC reference: 2290568

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Professor Dr Edwin Weber and Professor Dr Monika Mazik (Technische Universität Bergakademie Freiberg) for their support.

full crystallographic data

Crystal data

C26H26N4O6·2C4H8O Dx = 1.296 Mg m3
Mr = 634.71 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41 Cell parameters from 1266 reflections
a = 13.632 (4) Å θ = 3.1–26.7°
c = 17.507 (6) Å µ = 0.09 mm1
V = 3253 (2) Å3 T = 153 K
Z = 4 Chunk, colourless
F(000) = 1352 0.10 × 0.05 × 0.04 mm

Data collection

STOE IPDS 2T diffractometer 3269 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.028
Plane graphite monochromator θmax = 27.0°, θmin = 3.0°
Detector resolution: 6.67 pixels mm-1 h = −17→17
rotation method scans k = −17→17
25670 measured reflections l = −22→22
3554 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0557P)2 + 2.0532P] where P = (Fo2 + 2Fc2)/3
3554 reflections (Δ/σ)max = 0.002
266 parameters Δρmax = 0.31 e Å3
95 restraints Δρmin = −0.20 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.38152 (16) 0.16933 (16) 0.54757 (12) 0.0285 (4)
H1N 0.376 (2) 0.194 (2) 0.504 (2) 0.030 (8)*
N2 0.27971 (16) 0.29428 (15) 0.58122 (12) 0.0278 (4)
H2N 0.285 (2) 0.310 (2) 0.533 (2) 0.034 (8)*
O1 0.31329 (14) 0.17368 (13) 0.66808 (10) 0.0302 (4)
O2 0.11068 (16) 0.19008 (15) 0.57508 (14) 0.0445 (5)
O3 0.02642 (16) 0.30373 (19) 0.63921 (15) 0.0529 (6)
H3O −0.023 (4) 0.263 (4) 0.627 (5) 0.14 (3)*
C1 0.3225 (2) 0.5393 (2) 0.54681 (18) 0.0389 (6)
H1 0.302627 0.524528 0.496096 0.047*
C2 0.4061 (2) 0.5960 (2) 0.55894 (19) 0.0460 (7)
H2A 0.442763 0.619510 0.516591 0.055*
C3 0.4360 (2) 0.6185 (2) 0.6331 (2) 0.0497 (8)
H3 0.493013 0.657049 0.641531 0.060*
C4 0.3818 (3) 0.5840 (2) 0.69431 (19) 0.0466 (7)
H4 0.401726 0.599088 0.744967 0.056*
C5 0.2986 (2) 0.5276 (2) 0.68217 (16) 0.0380 (6)
H5 0.262005 0.504595 0.724742 0.046*
C6 0.26774 (19) 0.50397 (18) 0.60822 (16) 0.0313 (5)
C7 0.17887 (19) 0.44008 (19) 0.59624 (15) 0.0327 (6)
H7A 0.161232 0.440197 0.541378 0.039*
H7B 0.122863 0.467660 0.625126 0.039*
C8 0.19711 (18) 0.33349 (18) 0.62249 (14) 0.0283 (5)
H8 0.213017 0.333795 0.678256 0.034*
C9 0.32327 (17) 0.20934 (17) 0.60329 (13) 0.0252 (5)
C10 0.43982 (17) 0.08384 (17) 0.55283 (14) 0.0250 (5)
C11 0.47052 (18) 0.04159 (18) 0.62133 (14) 0.0275 (5)
H11 0.450935 0.069967 0.668486 0.033*
C12 0.4700 (2) 0.0413 (2) 0.48385 (14) 0.0341 (6)
H12 0.449394 0.068988 0.436734 0.041*
C13 0.1072 (2) 0.2663 (2) 0.60914 (15) 0.0370 (6)
O4A 0.6924 (5) 0.1252 (4) 0.3577 (7) 0.048 (2) 0.571 (15)
C14A 0.5578 (8) 0.2254 (9) 0.3317 (12) 0.062 (5) 0.571 (15)
H14A 0.519420 0.224367 0.379670 0.074* 0.571 (15)
H14B 0.515206 0.247603 0.289262 0.074* 0.571 (15)
C15A 0.6031 (10) 0.1256 (10) 0.3148 (10) 0.046 (4) 0.571 (15)
H15A 0.559079 0.071968 0.331644 0.055* 0.571 (15)
H15B 0.616352 0.118003 0.259558 0.055* 0.571 (15)
C16A 0.7185 (6) 0.2206 (5) 0.3801 (6) 0.057 (2) 0.571 (15)
H16A 0.787187 0.234862 0.365513 0.068* 0.571 (15)
H16B 0.711966 0.228135 0.436102 0.068* 0.571 (15)
C17A 0.6488 (4) 0.2893 (4) 0.3391 (4) 0.0483 (19) 0.571 (15)
H17A 0.674677 0.308654 0.288402 0.058* 0.571 (15)
H17B 0.635496 0.348937 0.369627 0.058* 0.571 (15)
O4B 0.6865 (10) 0.1184 (7) 0.3439 (12) 0.081 (5) 0.429 (15)
C14B 0.5595 (10) 0.2278 (11) 0.3178 (12) 0.043 (4) 0.429 (15)
H14C 0.491571 0.225648 0.337787 0.052* 0.429 (15)
H14D 0.560401 0.268410 0.270882 0.052* 0.429 (15)
C15B 0.5969 (15) 0.1248 (10) 0.3012 (13) 0.046 (4) 0.429 (15)
H15C 0.549184 0.074772 0.318503 0.056* 0.429 (15)
H15D 0.609168 0.115831 0.245904 0.056* 0.429 (15)
C16B 0.7256 (7) 0.2178 (7) 0.3503 (8) 0.053 (3) 0.429 (15)
H16C 0.748952 0.243547 0.300663 0.064* 0.429 (15)
H16D 0.778608 0.222487 0.388781 0.064* 0.429 (15)
C17B 0.6294 (8) 0.2691 (10) 0.3774 (10) 0.088 (4) 0.429 (15)
H17C 0.610777 0.249281 0.429818 0.105* 0.429 (15)
H17D 0.634210 0.341453 0.374449 0.105* 0.429 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0345 (11) 0.0309 (10) 0.0202 (9) 0.0040 (9) 0.0040 (8) 0.0030 (8)
N2 0.0338 (11) 0.0261 (10) 0.0235 (10) 0.0025 (8) 0.0050 (8) 0.0009 (8)
O1 0.0355 (10) 0.0342 (9) 0.0209 (8) 0.0044 (7) 0.0033 (7) 0.0026 (7)
O2 0.0431 (11) 0.0363 (11) 0.0540 (13) −0.0057 (8) −0.0076 (10) −0.0039 (9)
O3 0.0357 (11) 0.0657 (15) 0.0574 (14) −0.0110 (10) 0.0096 (10) −0.0175 (12)
C1 0.0424 (15) 0.0388 (14) 0.0355 (13) 0.0037 (12) 0.0062 (12) −0.0026 (12)
C2 0.0465 (17) 0.0469 (17) 0.0445 (17) −0.0021 (13) 0.0145 (14) −0.0026 (13)
C3 0.0425 (16) 0.0437 (17) 0.063 (2) −0.0089 (13) 0.0042 (15) −0.0104 (15)
C4 0.0492 (18) 0.0451 (17) 0.0454 (16) −0.0092 (14) −0.0022 (13) −0.0104 (13)
C5 0.0451 (16) 0.0353 (14) 0.0337 (14) −0.0013 (12) 0.0016 (12) −0.0016 (11)
C6 0.0337 (13) 0.0249 (11) 0.0353 (13) 0.0066 (10) 0.0010 (10) −0.0003 (10)
C7 0.0294 (12) 0.0328 (13) 0.0360 (14) 0.0061 (10) −0.0019 (10) 0.0012 (11)
C8 0.0277 (11) 0.0333 (12) 0.0240 (11) 0.0004 (10) 0.0008 (9) 0.0005 (9)
C9 0.0268 (11) 0.0263 (11) 0.0224 (11) −0.0041 (9) 0.0001 (9) −0.0019 (9)
C10 0.0250 (11) 0.0284 (11) 0.0218 (10) −0.0018 (9) 0.0011 (9) 0.0006 (9)
C11 0.0309 (11) 0.0306 (12) 0.0210 (11) 0.0013 (10) 0.0007 (9) −0.0018 (9)
C12 0.0396 (14) 0.0427 (15) 0.0199 (11) 0.0115 (12) 0.0000 (10) 0.0012 (10)
C13 0.0344 (13) 0.0479 (16) 0.0289 (13) −0.0011 (12) 0.0001 (11) 0.0060 (11)
O4A 0.038 (3) 0.034 (3) 0.072 (5) −0.003 (2) −0.021 (3) −0.001 (2)
C14A 0.048 (6) 0.054 (7) 0.083 (9) 0.003 (5) −0.003 (5) −0.012 (5)
C15A 0.037 (5) 0.059 (7) 0.043 (5) −0.006 (4) −0.002 (3) −0.015 (4)
C16A 0.057 (3) 0.055 (3) 0.059 (3) 0.003 (2) −0.009 (2) −0.002 (2)
C17A 0.049 (3) 0.038 (2) 0.058 (3) 0.0014 (19) 0.006 (2) 0.000 (2)
O4B 0.113 (10) 0.064 (6) 0.065 (6) 0.058 (6) −0.020 (5) −0.008 (5)
C14B 0.040 (7) 0.047 (7) 0.042 (5) 0.024 (5) −0.003 (4) −0.003 (4)
C15B 0.056 (8) 0.025 (6) 0.058 (9) 0.009 (5) 0.011 (5) 0.010 (5)
C16B 0.052 (3) 0.053 (3) 0.055 (4) 0.001 (2) −0.007 (3) −0.003 (3)
C17B 0.088 (5) 0.087 (5) 0.089 (5) 0.009 (3) −0.004 (3) −0.004 (3)

Geometric parameters (Å, º)

N1—C9 1.371 (3) C11—H11 0.9500
N1—C10 1.413 (3) C12—C12i 1.390 (5)
N1—H1N 0.84 (4) C12—H12 0.9500
N2—C9 1.357 (3) O4A—C16A 1.405 (8)
N2—C8 1.441 (3) O4A—C15A 1.430 (8)
N2—H2N 0.88 (3) C14A—C15A 1.522 (9)
O1—C9 1.241 (3) C14A—C17A 1.522 (10)
O2—C13 1.199 (4) C14A—H14A 0.9900
O3—C13 1.324 (4) C14A—H14B 0.9900
O3—H3O 0.90 (3) C15A—H15A 0.9900
C1—C2 1.393 (5) C15A—H15B 0.9900
C1—C6 1.395 (4) C16A—C17A 1.515 (8)
C1—H1 0.9500 C16A—H16A 0.9900
C2—C3 1.395 (5) C16A—H16B 0.9900
C2—H2A 0.9500 C17A—H17A 0.9900
C3—C4 1.383 (5) C17A—H17B 0.9900
C3—H3 0.9500 O4B—C15B 1.435 (10)
C4—C5 1.387 (4) O4B—C16B 1.460 (10)
C4—H4 0.9500 C14B—C15B 1.521 (9)
C5—C6 1.399 (4) C14B—C17B 1.521 (11)
C5—H5 0.9500 C14B—H14C 0.9900
C6—C7 1.507 (4) C14B—H14D 0.9900
C7—C8 1.544 (3) C15B—H15C 0.9900
C7—H7A 0.9900 C15B—H15D 0.9900
C7—H7B 0.9900 C16B—C17B 1.560 (10)
C8—C13 1.547 (4) C16B—H16C 0.9900
C8—H8 1.0000 C16B—H16D 0.9900
C10—C11 1.395 (3) C17B—H17C 0.9900
C10—C12 1.402 (3) C17B—H17D 0.9900
C11—C11i 1.390 (5)
C9—N1—C10 127.4 (2) O3—C13—C8 111.8 (3)
C9—N1—H1N 116 (2) C16A—O4A—C15A 111.0 (7)
C10—N1—H1N 116 (2) C15A—C14A—C17A 101.4 (8)
C9—N2—C8 121.0 (2) C15A—C14A—H14A 111.5
C9—N2—H2N 117 (2) C17A—C14A—H14A 111.5
C8—N2—H2N 117 (2) C15A—C14A—H14B 111.5
C13—O3—H3O 107 (5) C17A—C14A—H14B 111.5
C2—C1—C6 120.8 (3) H14A—C14A—H14B 109.3
C2—C1—H1 119.6 O4A—C15A—C14A 104.3 (7)
C6—C1—H1 119.6 O4A—C15A—H15A 110.9
C1—C2—C3 120.2 (3) C14A—C15A—H15A 110.9
C1—C2—H2A 119.9 O4A—C15A—H15B 110.9
C3—C2—H2A 119.9 C14A—C15A—H15B 110.9
C4—C3—C2 119.4 (3) H15A—C15A—H15B 108.9
C4—C3—H3 120.3 O4A—C16A—C17A 106.4 (6)
C2—C3—H3 120.3 O4A—C16A—H16A 110.5
C3—C4—C5 120.4 (3) C17A—C16A—H16A 110.5
C3—C4—H4 119.8 O4A—C16A—H16B 110.5
C5—C4—H4 119.8 C17A—C16A—H16B 110.5
C4—C5—C6 121.0 (3) H16A—C16A—H16B 108.6
C4—C5—H5 119.5 C16A—C17A—C14A 101.4 (6)
C6—C5—H5 119.5 C16A—C17A—H17A 111.5
C1—C6—C5 118.2 (3) C14A—C17A—H17A 111.5
C1—C6—C7 121.5 (3) C16A—C17A—H17B 111.5
C5—C6—C7 120.2 (2) C14A—C17A—H17B 111.5
C6—C7—C8 111.9 (2) H17A—C17A—H17B 109.3
C6—C7—H7A 109.2 C15B—O4B—C16B 107.1 (10)
C8—C7—H7A 109.2 C15B—C14B—C17B 105.2 (7)
C6—C7—H7B 109.2 C15B—C14B—H14C 110.7
C8—C7—H7B 109.2 C17B—C14B—H14C 110.7
H7A—C7—H7B 107.9 C15B—C14B—H14D 110.7
N2—C8—C7 109.0 (2) C17B—C14B—H14D 110.7
N2—C8—C13 108.9 (2) H14C—C14B—H14D 108.8
C7—C8—C13 112.6 (2) O4B—C15B—C14B 104.0 (8)
N2—C8—H8 108.8 O4B—C15B—H15C 111.0
C7—C8—H8 108.8 C14B—C15B—H15C 111.0
C13—C8—H8 108.8 O4B—C15B—H15D 111.0
O1—C9—N2 123.1 (2) C14B—C15B—H15D 111.0
O1—C9—N1 123.9 (2) H15C—C15B—H15D 109.0
N2—C9—N1 113.0 (2) O4B—C16B—C17B 97.6 (8)
C11—C10—C12 118.8 (2) O4B—C16B—H16C 112.2
C11—C10—N1 124.4 (2) C17B—C16B—H16C 112.2
C12—C10—N1 116.8 (2) O4B—C16B—H16D 112.2
C11i—C11—C10 120.70 (14) C17B—C16B—H16D 112.2
C11i—C11—H11 119.7 H16C—C16B—H16D 109.8
C10—C11—H11 119.7 C14B—C17B—C16B 98.8 (10)
C12i—C12—C10 120.52 (15) C14B—C17B—H17C 112.0
C12i—C12—H12 119.7 C16B—C17B—H17C 112.0
C10—C12—H12 119.7 C14B—C17B—H17D 112.0
O2—C13—O3 124.4 (3) C16B—C17B—H17D 112.0
O2—C13—C8 123.9 (3) H17C—C17B—H17D 109.7
C6—C1—C2—C3 −0.1 (5) C9—N1—C10—C12 161.9 (2)
C1—C2—C3—C4 −0.1 (5) C12—C10—C11—C11i −0.4 (4)
C2—C3—C4—C5 0.1 (5) N1—C10—C11—C11i −178.7 (3)
C3—C4—C5—C6 0.2 (5) C11—C10—C12—C12i −0.4 (5)
C2—C1—C6—C5 0.4 (4) N1—C10—C12—C12i 178.1 (3)
C2—C1—C6—C7 −178.2 (3) N2—C8—C13—O2 5.8 (4)
C4—C5—C6—C1 −0.5 (4) C7—C8—C13—O2 126.8 (3)
C4—C5—C6—C7 178.2 (3) N2—C8—C13—O3 −173.6 (2)
C1—C6—C7—C8 110.2 (3) C7—C8—C13—O3 −52.6 (3)
C5—C6—C7—C8 −68.4 (3) C16A—O4A—C15A—C14A −16.5 (18)
C9—N2—C8—C7 167.2 (2) C17A—C14A—C15A—O4A 34.2 (17)
C9—N2—C8—C13 −69.6 (3) C15A—O4A—C16A—C17A −8.6 (15)
C6—C7—C8—N2 −57.9 (3) O4A—C16A—C17A—C14A 29.8 (13)
C6—C7—C8—C13 −178.9 (2) C15A—C14A—C17A—C16A −38.3 (15)
C8—N2—C9—O1 −18.6 (4) C16B—O4B—C15B—C14B −28 (2)
C8—N2—C9—N1 163.4 (2) C17B—C14B—C15B—O4B −6 (2)
C10—N1—C9—O1 −0.6 (4) C15B—O4B—C16B—C17B 48.8 (18)
C10—N1—C9—N2 177.4 (2) C15B—C14B—C17B—C16B 34 (2)
C9—N1—C10—C11 −19.7 (4) O4B—C16B—C17B—C14B −48.8 (16)

Symmetry code: (i) −x+1, −y, z.

Hydrogen-bond geometry (Å, º)

Cg is defined as the centre of gravity of the rings: Cg1 is C1···C6; Cg2 is C10/C11/C12/C10'/C11'/C12' with primed atoms generated by symmetry -x+1, -y, z.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1ii 0.84 (4) 2.32 (3) 3.091 (3) 153 (3)
N2—H2N···O1ii 0.88 (3) 2.08 (4) 2.937 (3) 163 (3)
O3—H3O···O4Aiii 0.90 (3) 1.73 (3) 2.623 (7) 175 (7)
C5—H5···O2iv 0.95 2.55 3.464 (4) 161
C8—H8···O2iv 1.00 2.70 3.629 (4) 155
C11—H11···O1 0.95 2.35 2.916 (3) 118
C14A—H14B···O3v 0.99 2.78 3.581 (18) 139
C16A—H16A···Cg1vi 0.99 2.61 3.497 (8) 149
C16B—H16D···Cg1vi 0.99 2.82 3.449 (10) 122
C17A—H17B···Cg2vii 0.99 3.00 3.574 (8) 118

Symmetry codes: (ii) −y+1/2, x, z−1/4; (iii) −y, x−1/2, z+1/4; (iv) y, −x+1/2, z+1/4; (v) −x+1/2, −y+1/2, z−1/2; (vi) x, y+1, z; (vii) y+1/2, −x+1, z−1/4.

Funding Statement

Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

  1. Albrecht, M., Witt, K., Fröhlich, R. & Kataeva, O. (2002). Tetrahedron, 58, 561–567.
  2. Berkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, M., Neudörfl, J.-M. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319–4330. [DOI] [PubMed]
  3. Casula, A., Bazzicalupi, C., Bettoschi, A., Cadoni, E., Coles, S. J., Horton, P. N., Isaia, F., Lippolis, V., Mapp, L. K., Marini, G. M., Montis, R., Scorciapino, M. A. & Caltagirone, C. (2016). Dalton Trans. 45, 3078–3085. [DOI] [PubMed]
  4. Das, A., Nayak, B. & Das, G. (2020). CrystEngComm, 22, 2197–2207.
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  8. Manna, U., Das, A. & Das, G. (2018). Cryst. Growth Des. 18, 6801–6815.
  9. Manna, U. & Das, G. (2019). CrystEngComm, 21, 65–76.
  10. Manna, U. & Das, G. (2020). J. Mol. Struct. 1202, 127289.
  11. Saxena, P., Thirupathi, N. & Nethaji, M. (2014). Organometallics, 33, 5554–5565.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Shugrue, C. R., Sculimbrene, B. R., Jarvo, E. R., Mercado, B. Q. & Miller, S. J. (2019). J. Org. Chem. 84, 1664–1672. [DOI] [PMC free article] [PubMed]
  16. Stapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166–1172.
  17. Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409–419.
  18. Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007435/bh4077sup1.cif

x-08-x230743-sup1.cif (863KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007435/bh4077Isup2.hkl

x-08-x230743-Isup2.hkl (284KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007435/bh4077Isup3.cml

CCDC reference: 2290568

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES