Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 12;8(Pt 9):x230780. doi: 10.1107/S2414314623007800

(2,4-Di­chloro­benzyl­idene)[2-(1H-indol-3-yl)eth­yl]amine

Suganya Murugan a, Anaglit Catherine Paul b, Themmila Khamrang c, Savaridasan Jose Kavitha b, Venkatachalam Rajakannan d, Madhukar Hemamalini b,*
Editor: W T A Harrisone
PMCID: PMC10561229  PMID: 37818473

The mol­ecules of the title compound are linked by N—H⋯N hydrogen bonds, generating a C(7) chain extending along the a-axis direction.

Keywords: crystal structure, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the title compound, C17H14Cl2N2, the mol­ecule exists in an E configuration with respect to the C=N bond of the Schiff base fragment. The dihedral angle between the indole ring system and the benzene ring is 80.86 (12)°. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds, generating a C(7) chain extending along the a-axis direction. No aromatic π–π stacking occurs but weak C—H⋯π inter­actions are observed. graphic file with name x-08-x230780-scheme1-3D1.jpg

Structure description

Schiff bases are widely used as catalysts, corrosion inhibitors and inter­mediates in organic synthesis, and also play a potential role in the development of coordination chemistry (Muralisankar et al., 2016). Indole and its derivatives are useful staring compounds to derive pharmaceutical (Nalli et al., 2020) and biological (Arumugam et al., 2021) mat­erials. In the present study, the hydrogen-bonding inter­actions and C—H⋯π inter­actions of the title compound are investigated.

The asymmetric unit of the title compound is shown in Fig. 1. The C=N double bond adopts an E configuration. The bond lengths and angles in the title mol­ecule are normal and agree with those in other indole–imine compounds (e.g., Suresh et al., 2016; Ho et al., 2006). The dihedral angle between the C1–C8/N1 indole ring system and the C12–C17 benzene ring is 80.86 (10)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

In the extended structure, the N1—H5 group is a hydrogen-bond donor to atom N2 of the imino group (Table 1). These hydrogen bonds generate a C(7) chain extending along the a-axis direction, as shown in Fig. 2. There are no π–π inter­actions in this crystal structure but weak C—H⋯π inter­actions occur.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯N2i 0.83 (3) 2.17 (3) 2.971 (3) 163 (2)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Partial packing diagram for the title compound showing the formation of [100] hydrogen-bonded chains.

A search of the Cambridge Structural Database (Version 5.43, update November 2022; Groom et al., 2016) for the benzyl­idene)-[2-(1H-indol-3-yl)-eth­yl]-amine skeleton yielded the hits 1-(anthracen-9-yl)-N-[2-(1H- indol-3-yl)eth­yl]methanimine (CSD refcode TEGJIB; Faizi et al., 2017), 2-[2-(1H-indol-3-yl­ethyl­imino­meth­yl)]-5-methyl­phenol (PEVXEW; Brink et al., 2018), rac-4-{(E)-[1-cyano-1-cyclo­hexyl-2-(1H-indol-yl)eth­yl]imino­meth­yl} benzo­nitrile (OCEWIE; Letessier et al., 2011), 1H-indole-3-ethyl­enesalicylaldimine (FAJVIV; Rodriguez et al., 1987) and 1-(4-chloro­phen­yl)-2-{[2-(1H-indol-3-yl) eth­yl]imino}-2-(4-meth­oxy­phen­yl)ethan-1-one (AZUYUS; Li et al., 2021).

Synthesis and crystallization

The title compound was synthesized by condensing tryptamine, 2-(1H-indol-3-yl)ethan-1-amine (0.01 mmol) and 2,4-di­chloro­benzaldehyde (0.01 mmol), which were taken separately, dissolved in 40 ml of ethanol, then mixed, and heated on a water bath for one h, then kept for crystallization. After a few days, colourless plate-shaped crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C17H14Cl2N2
M r 317.20
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.2107 (8), 10.2179 (13), 20.863 (3)
β (°) 90.562 (4)
V3) 1537.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.52 × 0.34 × 0.13
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.631, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 68672, 3872, 1946
R int 0.091
(sin θ/λ)max−1) 0.671
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.134, 1.01
No. of reflections 3872
No. of parameters 246
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.27

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623007800/hb4446sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007800/hb4446Isup2.hkl

x-08-x230780-Isup2.hkl (308.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007800/hb4446Isup3.cml

CCDC reference: 2290063

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH thanks SERB-IRE for financial support (Ref. No. SIR/2022/000011]. SJK thanks TANSCHE for financial support (File No. RGP/2019–20/MTWU/ HECP-0080).

full crystallographic data

Crystal data

C17H14Cl2N2 F(000) = 656
Mr = 317.20 Dx = 1.371 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.2107 (8) Å Cell parameters from 3778 reflections
b = 10.2179 (13) Å θ = 2.6–29.9°
c = 20.863 (3) Å µ = 0.42 mm1
β = 90.562 (4)° T = 296 K
V = 1537.1 (3) Å3 Plate, colourless
Z = 4 0.52 × 0.34 × 0.13 mm

Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer 1946 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.091
ω scans θmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→9
Tmin = 0.631, Tmax = 0.746 k = −13→13
68672 measured reflections l = −27→27
3872 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 All H-atom parameters refined
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.4436P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3872 reflections Δρmax = 0.20 e Å3
246 parameters Δρmin = −0.26 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All the H atoms were located in a difference Fourier map and allowed to refine freely (C—H = 0.93–0.96 and N—H = 0.83 Å).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.82313 (10) 0.46440 (8) 0.37941 (3) 0.0896 (3)
Cl1 0.65404 (13) 0.74406 (7) 0.58638 (4) 0.1034 (3)
N2 0.6843 (2) 0.3930 (2) 0.69593 (9) 0.0656 (5)
N1 0.0458 (3) 0.2537 (2) 0.70118 (10) 0.0701 (6)
C5 0.3287 (3) 0.1772 (2) 0.68119 (11) 0.0628 (6)
C8 0.3389 (3) 0.2540 (2) 0.73804 (11) 0.0648 (6)
C6 0.1440 (3) 0.1792 (2) 0.65910 (11) 0.0631 (6)
C12 0.6934 (3) 0.4814 (2) 0.58989 (12) 0.0593 (6)
C7 0.1639 (3) 0.2993 (3) 0.74787 (13) 0.0680 (7)
C13 0.6992 (3) 0.5929 (2) 0.55222 (12) 0.0641 (6)
C14 0.7393 (3) 0.5892 (3) 0.48855 (14) 0.0683 (7)
C15 0.7767 (3) 0.4709 (3) 0.46026 (12) 0.0648 (6)
C17 0.7315 (3) 0.3640 (3) 0.55950 (14) 0.0675 (7)
C11 0.6416 (3) 0.4833 (3) 0.65769 (13) 0.0661 (7)
C16 0.7732 (3) 0.3571 (3) 0.49571 (14) 0.0707 (7)
C4 0.4574 (4) 0.1057 (3) 0.64506 (16) 0.0818 (8)
C10 0.6134 (4) 0.4015 (3) 0.76114 (14) 0.0785 (8)
C1 0.0861 (5) 0.1121 (3) 0.60482 (14) 0.0836 (8)
C3 0.4003 (6) 0.0415 (3) 0.59108 (17) 0.0979 (11)
C9 0.5055 (4) 0.2801 (3) 0.77920 (14) 0.0796 (8)
C2 0.2174 (6) 0.0439 (3) 0.57140 (17) 0.0972 (10)
H12 0.720 (3) 0.289 (3) 0.5830 (12) 0.082 (8)*
H11 0.573 (3) 0.556 (2) 0.6692 (10) 0.065 (7)*
H10 0.543 (4) 0.476 (3) 0.7641 (12) 0.081 (9)*
H9 0.726 (4) 0.407 (3) 0.7916 (13) 0.099 (9)*
H8 0.586 (4) 0.201 (3) 0.7761 (12) 0.091 (9)*
H4 0.579 (4) 0.105 (3) 0.6598 (12) 0.083 (9)*
H13 0.797 (3) 0.275 (3) 0.4752 (12) 0.076 (8)*
H14 0.743 (3) 0.663 (3) 0.4649 (12) 0.082 (8)*
H7 0.470 (3) 0.290 (2) 0.8258 (12) 0.078 (7)*
H6 0.126 (3) 0.357 (2) 0.7814 (10) 0.068 (7)*
H1 −0.045 (4) 0.108 (3) 0.5888 (13) 0.106 (10)*
H3 0.489 (4) −0.005 (3) 0.5634 (15) 0.119 (11)*
H2 0.177 (5) −0.006 (4) 0.5331 (17) 0.132 (13)*
H5 −0.060 (4) 0.282 (3) 0.6933 (12) 0.082 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0795 (5) 0.1146 (6) 0.0746 (5) 0.0090 (4) 0.0029 (3) 0.0035 (4)
Cl1 0.1558 (8) 0.0600 (4) 0.0939 (6) 0.0151 (4) −0.0242 (5) −0.0064 (4)
N2 0.0525 (11) 0.0758 (14) 0.0685 (13) 0.0038 (10) −0.0010 (9) 0.0048 (11)
N1 0.0601 (13) 0.0747 (15) 0.0757 (15) 0.0114 (12) 0.0050 (11) 0.0011 (11)
C5 0.0652 (15) 0.0551 (14) 0.0681 (15) 0.0121 (11) 0.0125 (11) 0.0153 (12)
C8 0.0605 (14) 0.0739 (16) 0.0602 (14) 0.0068 (12) 0.0087 (11) 0.0181 (13)
C6 0.0695 (15) 0.0528 (14) 0.0671 (15) 0.0071 (12) 0.0078 (12) 0.0093 (12)
C12 0.0467 (12) 0.0621 (15) 0.0690 (15) 0.0059 (11) −0.0094 (10) −0.0004 (12)
C7 0.0707 (16) 0.0718 (17) 0.0617 (15) 0.0074 (13) 0.0119 (13) 0.0002 (13)
C13 0.0644 (14) 0.0555 (15) 0.0721 (16) 0.0053 (11) −0.0151 (12) 0.0018 (13)
C14 0.0659 (16) 0.0587 (16) 0.0800 (19) −0.0008 (12) −0.0136 (13) 0.0104 (15)
C15 0.0478 (13) 0.0780 (18) 0.0684 (15) 0.0042 (12) −0.0071 (10) 0.0065 (14)
C17 0.0659 (15) 0.0596 (16) 0.0769 (18) 0.0066 (12) −0.0027 (12) 0.0089 (14)
C11 0.0534 (14) 0.0663 (17) 0.0783 (18) 0.0082 (12) −0.0057 (12) −0.0042 (14)
C16 0.0676 (16) 0.0640 (17) 0.0803 (19) 0.0123 (13) −0.0014 (13) −0.0037 (15)
C4 0.079 (2) 0.0709 (18) 0.096 (2) 0.0228 (15) 0.0201 (17) 0.0209 (17)
C10 0.0702 (18) 0.096 (2) 0.0690 (18) 0.0042 (17) −0.0010 (14) −0.0028 (16)
C1 0.102 (2) 0.0655 (17) 0.083 (2) 0.0028 (17) −0.0044 (17) −0.0025 (16)
C3 0.138 (3) 0.0652 (19) 0.091 (2) 0.031 (2) 0.032 (2) −0.0007 (17)
C9 0.0741 (18) 0.098 (2) 0.0663 (18) 0.0031 (16) −0.0018 (14) 0.0154 (16)
C2 0.137 (3) 0.0653 (19) 0.090 (2) 0.010 (2) 0.006 (2) −0.0077 (17)

Geometric parameters (Å, º)

Cl2—C15 1.724 (3) C14—H14 0.90 (3)
Cl1—C13 1.733 (2) C15—C16 1.378 (4)
N2—C11 1.256 (3) C17—C16 1.369 (4)
N2—C10 1.461 (3) C17—H12 0.92 (3)
N1—C6 1.365 (3) C11—H11 0.92 (2)
N1—C7 1.369 (3) C16—H13 0.95 (3)
N1—H5 0.83 (3) C4—C3 1.364 (5)
C5—C6 1.405 (3) C4—H4 0.93 (3)
C5—C4 1.406 (4) C10—C9 1.514 (4)
C5—C8 1.424 (3) C10—H10 0.92 (3)
C8—C7 1.362 (3) C10—H9 1.03 (3)
C8—C9 1.494 (4) C1—C2 1.371 (4)
C6—C1 1.385 (4) C1—H1 1.00 (3)
C12—C13 1.385 (3) C3—C2 1.377 (5)
C12—C17 1.386 (3) C3—H3 0.99 (3)
C12—C11 1.467 (3) C9—H8 1.00 (3)
C7—H6 0.96 (2) C9—H7 1.01 (2)
C13—C14 1.363 (4) C2—H2 0.99 (4)
C14—C15 1.373 (4)
C11—N2—C10 117.5 (2) N2—C11—C12 122.7 (2)
C6—N1—C7 108.9 (2) N2—C11—H11 123.5 (14)
C6—N1—H5 123.4 (18) C12—C11—H11 113.8 (14)
C7—N1—H5 125.7 (19) C17—C16—C15 118.9 (3)
C6—C5—C4 117.4 (3) C17—C16—H13 121.4 (15)
C6—C5—C8 107.8 (2) C15—C16—H13 119.6 (15)
C4—C5—C8 134.7 (3) C3—C4—C5 119.8 (3)
C7—C8—C5 105.8 (2) C3—C4—H4 123.2 (17)
C7—C8—C9 126.5 (3) C5—C4—H4 117.0 (17)
C5—C8—C9 127.7 (2) N2—C10—C9 111.6 (3)
N1—C6—C1 130.4 (3) N2—C10—H10 108.1 (16)
N1—C6—C5 107.1 (2) C9—C10—H10 112.3 (17)
C1—C6—C5 122.5 (2) N2—C10—H9 107.3 (15)
C13—C12—C17 116.5 (2) C9—C10—H9 107.4 (16)
C13—C12—C11 123.1 (2) H10—C10—H9 110 (2)
C17—C12—C11 120.4 (2) C2—C1—C6 117.6 (3)
C8—C7—N1 110.4 (2) C2—C1—H1 117.6 (17)
C8—C7—H6 126.3 (14) C6—C1—H1 124.7 (17)
N1—C7—H6 123.3 (13) C4—C3—C2 121.2 (3)
C14—C13—C12 122.5 (2) C4—C3—H3 121.5 (19)
C14—C13—Cl1 117.9 (2) C2—C3—H3 117.2 (19)
C12—C13—Cl1 119.5 (2) C8—C9—C10 114.6 (2)
C13—C14—C15 119.2 (3) C8—C9—H8 106.5 (16)
C13—C14—H14 121.4 (17) C10—C9—H8 110.3 (15)
C15—C14—H14 119.4 (17) C8—C9—H7 111.0 (13)
C14—C15—C16 120.5 (3) C10—C9—H7 107.0 (14)
C14—C15—Cl2 119.7 (2) H8—C9—H7 107 (2)
C16—C15—Cl2 119.8 (2) C1—C2—C3 121.4 (3)
C16—C17—C12 122.4 (3) C1—C2—H2 118 (2)
C16—C17—H12 120.0 (17) C3—C2—H2 121 (2)
C12—C17—H12 117.5 (16)
C6—C5—C8—C7 −0.3 (3) C13—C14—C15—Cl2 178.70 (17)
C4—C5—C8—C7 179.1 (3) C13—C12—C17—C16 0.2 (3)
C6—C5—C8—C9 179.4 (2) C11—C12—C17—C16 177.4 (2)
C4—C5—C8—C9 −1.1 (4) C10—N2—C11—C12 −175.7 (2)
C7—N1—C6—C1 179.5 (3) C13—C12—C11—N2 −159.7 (2)
C7—N1—C6—C5 0.9 (3) C17—C12—C11—N2 23.3 (4)
C4—C5—C6—N1 −179.9 (2) C12—C17—C16—C15 −0.3 (4)
C8—C5—C6—N1 −0.4 (3) C14—C15—C16—C17 0.1 (4)
C4—C5—C6—C1 1.4 (4) Cl2—C15—C16—C17 −178.35 (18)
C8—C5—C6—C1 −179.1 (2) C6—C5—C4—C3 −0.3 (4)
C5—C8—C7—N1 0.9 (3) C8—C5—C4—C3 −179.7 (3)
C9—C8—C7—N1 −178.9 (2) C11—N2—C10—C9 124.4 (3)
C6—N1—C7—C8 −1.1 (3) N1—C6—C1—C2 −179.7 (3)
C17—C12—C13—C14 0.2 (3) C5—C6—C1—C2 −1.4 (4)
C11—C12—C13—C14 −176.9 (2) C5—C4—C3—C2 −0.7 (5)
C17—C12—C13—Cl1 −179.82 (17) C7—C8—C9—C10 −89.3 (3)
C11—C12—C13—Cl1 3.1 (3) C5—C8—C9—C10 91.0 (3)
C12—C13—C14—C15 −0.4 (4) N2—C10—C9—C8 −60.8 (4)
Cl1—C13—C14—C15 179.62 (17) C6—C1—C2—C3 0.3 (5)
C13—C14—C15—C16 0.2 (4) C4—C3—C2—C1 0.8 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H5···N2i 0.83 (3) 2.17 (3) 2.971 (3) 163 (2)

Symmetry code: (i) x−1, y, z.

Funding Statement

Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, India, Science and Engineering Research Board (grant No. SIR/2022/000011); Tamil Nadu State Council for Higher Education (grant No. RGP/2019-20/MTWU/HECP-0080).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
  2. Arumugam, N., Almansour, A. I., Kumar, R. S., Yeswanthkumar, S., Padmanaban, R., Arun, Y., Kansız, S., Dege, N., Manohar, T. S. & Venketesh, S. (2021). J. Mol. Struct. 1225, 129165–129166.
  3. Brink, A., Kroon, R. E., Visser, H. G., van Rensburg, C. E. J. & Roodt, A. (2018). New J. Chem. 42, 5193–5203.
  4. Faizi, M. S. H., Dege, N., Malinkin, S. & Sliva, T. Y. (2017). Acta Cryst. E73, 1329–1332. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Ho, J. J., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800–5810.
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Letessier, J., Schollmeyer, D., Detert, H. & Opatz, T. (2011). Acta Cryst. E67, o3435. [DOI] [PMC free article] [PubMed]
  9. Li, L., Zhang, S., Deng, X., Li, G., Tang, Z. & Zhao, G. (2021). Org. Lett. 23, 6819–6824. [DOI] [PubMed]
  10. Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.
  11. Nalli, M., Armijos Rivera, J. I., Masci, D., Coluccia, A., Badia, R., Riveira-Muñoz, E., Brambilla, A., Cinquina, E., Turriziani, O., Falasca, F., Catalano, M., Limatola, C., Esté, J. A., Maga, G., Silvestri, R., Crespan, E. & La Regina, G. (2020). Eur. J. Med. Chem. 208, 112696. [DOI] [PubMed]
  12. Rodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134–136.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  16. Suresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603–15620. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623007800/hb4446sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007800/hb4446Isup2.hkl

x-08-x230780-Isup2.hkl (308.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007800/hb4446Isup3.cml

CCDC reference: 2290063

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES