Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 8;8(Pt 9):x230747. doi: 10.1107/S2414314623007472

Poly[[μ-1,3-bis­(pyridin-3-yl)urea]bis­(μ4-succinato)dicopper(II)], a ribbon-like coordination polymer

Frederick Ezenyilimba a, Robert L LaDuca a,*
Editor: S Bernèsb
PMCID: PMC10561230  PMID: 37818470

A divalent copper one-dimensional ribbon copper(II) coordination polymer, with 1,3-bis­(pyridin-3-yl)urea and succinate ligands, was structurally characterized by single-crystal X-ray diffraction.

Keywords: crystal structure, coordination polymer, ribbon topology, copper, succinate

Abstract

In the title com­pound, [Cu2(C4H4O4)2(C11H10N4O)] n , mono-periodic coordination polymer ribbons are held into the crystal structure by means of N—H⋯O hydrogen bonding and crystal packing forces. graphic file with name x-08-x230747-scheme1-3D1.jpg

Structure description

The title com­pound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both succinate (succ) and 1,3-bis­(pyridin-3-yl)urea (or 3,3′-di­pyridyl­urea, 3-dpu) ligands. Previously, our group had isolated a series of cadmium succinate coordination polymers featuring isomeric di­pyridyl­amide coligands. Structural topologies were highly dependent on the specific di­pyridyl­amide ligand used (Uebler et al., 2013).

The asymmetric unit of the title com­pound contains two divalent Cu atoms, two crystallographically distinct fully deprotonated succ ligands, and a full 3-dpu ligand. The Cu1 and Cu2 atoms display [NO4] square-pyramidal coordination environments, with elongated apical positions occupied by pyridyl N-atom donors from 3-dpu ligands. Their basal planes com­prise four carboxyl­ate O-atom donors from four different succ ligands (Table 1). The Cu1 and Cu2 atoms possess trigonality factors τ of 0.044 and 0.035 (Addison et al., 1984), indicating only a slight variance from idealized square-pyramidal geometry. Complete coordination environments and ligand sets are shown in Fig. 1.

Table 1. Selected geometric parameters (Å, °).

Cu1—O2 1.960 (4) Cu2—O1 1.979 (4)
Cu1—O4i 2.023 (4) Cu2—O3i 1.990 (4)
Cu1—O6 1.963 (4) Cu2—O5 1.980 (4)
Cu1—O8i 1.961 (4) Cu2—O7i 1.973 (4)
Cu1—N4ii 2.197 (5) Cu2—N1 2.167 (5)
       
O2—Cu1—O4i 90.48 (18) O1—Cu2—O3i 89.16 (18)
O2—Cu1—O6 87.41 (18) O1—Cu2—O5 90.34 (18)
O2—Cu1—O8i 166.45 (17) O1—Cu2—N1 95.10 (17)
O2—Cu1—N4ii 91.11 (18) O3i—Cu2—N1 99.11 (18)
O4i—Cu1—N4ii 89.25 (17) O5—Cu2—O3i 166.52 (17)
O6—Cu1—O4i 169.11 (17) O5—Cu2—N1 94.36 (18)
O6—Cu1—N4ii 101.47 (18) O7i—Cu2—O1 168.62 (18)
O8i—Cu1—O4i 88.52 (17) O7i—Cu2—O3i 88.50 (18)
O8i—Cu1—O6 91.03 (18) O7i—Cu2—O5 89.35 (19)
O8i—Cu1—N4ii 102.38 (18) O7i—Cu2—N1 96.27 (18)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 1.

Figure 1

The copper coordination environments in the title com­pound with the full ligand set and the com­plete {Cu2(OCO)4} paddlewheel cluster. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu dark blue, O red, N light blue, and C black. H-atom positions are represented as sticks. The symmetry codes are as listed in Table 1.

The carboxyl­ate groups of the succ ligands bridge Cu1 and Cu2 atoms in a synsyn fashion, giving rise to {Cu2(OCO)4} paddlewheel dimers with a Cu⋯Cu separation of 2.657 (1) Å. The full span of the gauche-conformation succ ligands connect the dimeric clusters into [Cu2(succ)2] n coordination polymer chains oriented parallel to the b crystal direction (Fig. 2). The 3-dpu ligands, which adopt a syn conformation, conjoin Cu1 and Cu2 along the top and bottom of the [Cu2(succ)2] n chain motifs, affording [Cu2(succ)2(3-dpu)] n coordination polymer ribbons oriented parallel to the b crystal direction (Fig. 3).

Figure 2.

Figure 2

The [Cu2(succ)2] n coordination polymer chain in the title com­pound, featuring {Cu2(OCO)4} paddlewheel clusters.

Figure 3.

Figure 3

A [Cu2(succ)2(3-dpu)] n coordination polymer ribbon in the title com­pound, with a [Cu2(succ)2] n chain motif drawn in red.

Regarding supra­molecular inter­actions, adjacent [Cu2(succ)2(3-dpu)] n motifs aggregate into supra­molecular layers parallel to the bc crystal planes by means of N—H⋯O hydrogen bonding between the urea groups of 3-dpu ligands in one ribbon, and succ carboxyl­ate O atoms in the next ribbon (Fig. 4). In turn, the supra­molecular layers aggregate into the three-dimensional crystal structure of the title com­pound by crystal packing forces (Fig. 5). Details regarding the hydrogen bonding patterns in the title com­pound are listed in Table 2.

Figure 4.

Figure 4

Supra­molecular layer formed by N—H⋯O hydrogen bonding (hatched bonds) between [Cu2(succ)2(3-dpu)] n ribbon motifs.

Figure 5.

Figure 5

Aggregation of supra­molecular layer motifs in the title com­pound.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4iii 0.88 2.21 3.042 (6) 157
N3—H3⋯O4iii 0.88 2.36 3.174 (6) 154

Symmetry code: (iii) Inline graphic .

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), succinic acid (succH2; 44 mg, 0.37 mmol), 3,3′-di­pyridyl­urea (3-dpu; 79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title com­plex were obtained in 43% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in calculated positions and refined with a riding model.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu2(C4H4O4)2(C11H10N4O)]
M r 573.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 15.587 (2), 6.7579 (10), 20.942 (3)
β (°) 111.614 (2)
V3) 2050.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.14
Crystal size (mm) 0.24 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.568, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15941, 3758, 2378
R int 0.110
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.151, 0.99
No. of reflections 3758
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.60

Computer programs: COSMO (Bruker, 2009), SAINT (Bruker, 2013), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), CrystalMakerX (Palmer, 2020), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623007472/bh4078sup1.cif

x-08-x230747-sup1.cif (504.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007472/bh4078Isup2.hkl

x-08-x230747-Isup2.hkl (299.8KB, hkl)

CCDC reference: 2290886

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Cu2(C4H4O4)2(C11H10N4O)] F(000) = 1160
Mr = 573.45 Dx = 1.857 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.587 (2) Å Cell parameters from 2446 reflections
b = 6.7579 (10) Å θ = 2.8–25.1°
c = 20.942 (3) Å µ = 2.14 mm1
β = 111.614 (2)° T = 173 K
V = 2050.9 (5) Å3 Plate, green
Z = 4 0.24 × 0.12 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 3758 independent reflections
Radiation source: sealed tube 2378 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.110
Detector resolution: 8.36 pixels mm-1 θmax = 25.4°, θmin = 1.4°
ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −8→8
Tmin = 0.568, Tmax = 0.745 l = −25→25
15941 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0685P)2] where P = (Fo2 + 2Fc2)/3
3758 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 1.12 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.76095 (5) 0.56430 (10) 0.20555 (4) 0.0199 (2)
Cu2 0.77124 (5) 0.49295 (10) 0.33295 (4) 0.0198 (2)
O1 0.6695 (3) 0.6855 (6) 0.3154 (2) 0.0241 (10)
O2 0.6730 (3) 0.7626 (6) 0.2124 (2) 0.0257 (11)
O3 0.6784 (3) 1.2834 (6) 0.2892 (2) 0.0250 (10)
O4 0.6616 (3) 1.3542 (6) 0.1809 (2) 0.0228 (10)
O5 0.8617 (3) 0.7122 (6) 0.3540 (2) 0.0272 (11)
O6 0.8587 (3) 0.7601 (6) 0.2474 (2) 0.0269 (11)
O7 0.8683 (3) 1.3085 (6) 0.3309 (2) 0.0284 (11)
O8 0.8527 (3) 1.3529 (6) 0.2213 (2) 0.0232 (10)
O9 0.5334 (3) 0.3287 (7) 0.4400 (2) 0.0355 (12)
N1 0.7897 (3) 0.4419 (7) 0.4394 (3) 0.0190 (12)
N2 0.6521 (4) 0.3177 (7) 0.5442 (3) 0.0226 (12)
H2 0.665061 0.298117 0.588321 0.027*
N3 0.5065 (4) 0.2208 (7) 0.5341 (3) 0.0225 (12)
H3 0.533315 0.195629 0.578293 0.027*
N4 0.2765 (4) 0.1280 (7) 0.4043 (2) 0.0207 (12)
C1 0.6429 (4) 0.7848 (8) 0.2603 (3) 0.0196 (14)
C2 0.5697 (4) 0.9394 (8) 0.2500 (3) 0.0194 (14)
H2A 0.579259 1.002925 0.294759 0.023*
H2B 0.508546 0.874023 0.234080 0.023*
C3 0.5692 (4) 1.0992 (9) 0.1984 (3) 0.0190 (14)
H3A 0.576689 1.034695 0.158311 0.023*
H3B 0.508195 1.165147 0.181940 0.023*
C4 0.6433 (4) 1.2555 (8) 0.2259 (3) 0.0181 (14)
C5 0.8876 (4) 0.7960 (9) 0.3111 (3) 0.0197 (14)
C6 0.9644 (4) 0.9500 (8) 0.3372 (3) 0.0225 (15)
H6A 0.961873 1.010462 0.379568 0.027*
H6B 1.024551 0.881653 0.349782 0.027*
C7 0.9604 (4) 1.1147 (9) 0.2866 (3) 0.0240 (15)
H7A 1.021401 1.180573 0.301650 0.029*
H7B 0.948973 1.054800 0.241052 0.029*
C8 0.8870 (4) 1.2704 (9) 0.2789 (3) 0.0213 (15)
C9 0.8712 (5) 0.4774 (9) 0.4890 (3) 0.0280 (16)
H9 0.922054 0.513711 0.476843 0.034*
C10 0.8834 (5) 0.4625 (9) 0.5578 (3) 0.0279 (16)
H10 0.942091 0.487920 0.592295 0.034*
C11 0.8108 (4) 0.4111 (9) 0.5757 (3) 0.0250 (15)
H11 0.818417 0.401257 0.622687 0.030*
C12 0.7253 (4) 0.3733 (8) 0.5245 (3) 0.0213 (14)
C13 0.7181 (5) 0.3899 (9) 0.4566 (3) 0.0234 (15)
H13 0.660291 0.363379 0.421060 0.028*
C14 0.5621 (5) 0.2911 (9) 0.5012 (3) 0.0235 (15)
C15 0.2276 (5) 0.0979 (9) 0.4441 (4) 0.0260 (16)
H15 0.163956 0.066116 0.423285 0.031*
C16 0.2677 (5) 0.1121 (8) 0.5150 (3) 0.0253 (15)
H16 0.231447 0.093317 0.542417 0.030*
C17 0.3608 (4) 0.1539 (9) 0.5456 (3) 0.0249 (15)
H17 0.389672 0.160856 0.594176 0.030*
C18 0.4114 (4) 0.1852 (8) 0.5044 (3) 0.0188 (14)
C19 0.3656 (5) 0.1700 (9) 0.4340 (3) 0.0251 (15)
H19 0.399984 0.190872 0.405368 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0226 (5) 0.0173 (4) 0.0204 (4) 0.0010 (3) 0.0088 (4) 0.0007 (3)
Cu2 0.0227 (5) 0.0170 (4) 0.0207 (4) 0.0002 (3) 0.0092 (4) 0.0002 (3)
O1 0.030 (3) 0.021 (2) 0.025 (3) 0.0066 (19) 0.015 (2) 0.0068 (19)
O2 0.034 (3) 0.021 (2) 0.025 (3) 0.009 (2) 0.015 (2) 0.0029 (19)
O3 0.031 (3) 0.023 (2) 0.022 (3) −0.007 (2) 0.010 (2) −0.0049 (19)
O4 0.026 (3) 0.024 (2) 0.018 (2) −0.0066 (19) 0.008 (2) 0.0026 (19)
O5 0.032 (3) 0.022 (2) 0.025 (3) −0.012 (2) 0.007 (2) 0.001 (2)
O6 0.032 (3) 0.024 (3) 0.028 (3) −0.006 (2) 0.015 (2) −0.006 (2)
O7 0.029 (3) 0.026 (3) 0.032 (3) 0.012 (2) 0.012 (2) 0.003 (2)
O8 0.025 (3) 0.022 (2) 0.021 (2) 0.0053 (19) 0.007 (2) 0.0023 (19)
O9 0.028 (3) 0.049 (3) 0.027 (3) −0.003 (2) 0.006 (2) 0.013 (2)
N1 0.019 (3) 0.015 (3) 0.019 (3) 0.002 (2) 0.004 (2) 0.002 (2)
N2 0.029 (3) 0.019 (3) 0.024 (3) 0.001 (2) 0.015 (3) 0.004 (2)
N3 0.029 (3) 0.017 (3) 0.021 (3) 0.001 (2) 0.009 (3) 0.005 (2)
N4 0.028 (3) 0.015 (3) 0.019 (3) −0.002 (2) 0.008 (3) 0.001 (2)
C1 0.024 (4) 0.012 (3) 0.025 (4) −0.009 (3) 0.012 (3) −0.006 (3)
C2 0.018 (3) 0.018 (3) 0.024 (3) −0.002 (3) 0.010 (3) 0.004 (3)
C3 0.018 (3) 0.020 (3) 0.021 (3) −0.001 (3) 0.009 (3) −0.002 (3)
C4 0.016 (3) 0.010 (3) 0.026 (4) 0.005 (2) 0.005 (3) −0.002 (3)
C5 0.013 (3) 0.020 (3) 0.024 (4) 0.005 (3) 0.003 (3) 0.005 (3)
C6 0.017 (4) 0.020 (4) 0.028 (4) −0.004 (3) 0.005 (3) −0.003 (3)
C7 0.021 (4) 0.023 (4) 0.028 (4) 0.001 (3) 0.009 (3) −0.002 (3)
C8 0.021 (4) 0.016 (3) 0.032 (4) −0.007 (3) 0.014 (3) −0.004 (3)
C9 0.023 (4) 0.036 (4) 0.028 (4) −0.001 (3) 0.013 (3) 0.001 (3)
C10 0.024 (4) 0.029 (4) 0.021 (4) −0.001 (3) −0.002 (3) 0.008 (3)
C11 0.032 (4) 0.026 (4) 0.017 (3) 0.006 (3) 0.009 (3) 0.000 (3)
C12 0.028 (4) 0.012 (3) 0.027 (4) −0.001 (3) 0.014 (3) 0.001 (3)
C13 0.031 (4) 0.021 (4) 0.019 (3) 0.002 (3) 0.011 (3) −0.001 (3)
C14 0.027 (4) 0.017 (3) 0.029 (4) 0.003 (3) 0.012 (3) 0.002 (3)
C15 0.019 (4) 0.019 (4) 0.040 (4) 0.002 (3) 0.011 (3) −0.003 (3)
C16 0.038 (4) 0.014 (3) 0.033 (4) −0.001 (3) 0.024 (4) 0.005 (3)
C17 0.026 (4) 0.026 (4) 0.024 (4) 0.001 (3) 0.011 (3) −0.002 (3)
C18 0.024 (4) 0.015 (3) 0.018 (3) 0.000 (3) 0.008 (3) 0.001 (3)
C19 0.029 (4) 0.021 (4) 0.027 (4) 0.001 (3) 0.013 (3) −0.001 (3)

Geometric parameters (Å, º)

Cu1—O2 1.960 (4) C2—H2A 0.9900
Cu1—O4i 2.023 (4) C2—H2B 0.9900
Cu1—O6 1.963 (4) C2—C3 1.526 (8)
Cu1—O8i 1.961 (4) C3—H3A 0.9900
Cu1—N4ii 2.197 (5) C3—H3B 0.9900
Cu2—O1 1.979 (4) C3—C4 1.515 (8)
Cu2—O3i 1.990 (4) C5—C6 1.528 (8)
Cu2—O5 1.980 (4) C6—H6A 0.9900
Cu2—O7i 1.973 (4) C6—H6B 0.9900
Cu2—N1 2.167 (5) C6—C7 1.522 (8)
O1—C1 1.265 (7) C7—H7A 0.9900
O2—C1 1.264 (7) C7—H7B 0.9900
O3—C4 1.248 (7) C7—C8 1.519 (8)
O4—C4 1.271 (7) C9—H9 0.9500
O5—C5 1.249 (7) C9—C10 1.386 (9)
O6—C5 1.263 (7) C10—H10 0.9500
O7—C8 1.254 (7) C10—C11 1.361 (9)
O8—C8 1.256 (7) C11—H11 0.9500
O9—C14 1.218 (7) C11—C12 1.392 (8)
N1—C9 1.333 (8) C12—C13 1.389 (8)
N1—C13 1.340 (7) C13—H13 0.9500
N2—H2 0.8800 C15—H15 0.9500
N2—C12 1.401 (8) C15—C16 1.387 (9)
N2—C14 1.371 (8) C16—H16 0.9500
N3—H3 0.8800 C16—C17 1.383 (9)
N3—C14 1.376 (8) C17—H17 0.9500
N3—C18 1.400 (8) C17—C18 1.383 (8)
N4—C15 1.335 (8) C18—C19 1.385 (8)
N4—C19 1.327 (8) C19—H19 0.9500
C1—C2 1.504 (8)
O2—Cu1—O4i 90.48 (18) O3—C4—O4 125.4 (5)
O2—Cu1—O6 87.41 (18) O3—C4—C3 119.0 (5)
O2—Cu1—O8i 166.45 (17) O4—C4—C3 115.5 (5)
O2—Cu1—N4ii 91.11 (18) O5—C5—O6 126.1 (6)
O4i—Cu1—N4ii 89.25 (17) O5—C5—C6 117.9 (6)
O6—Cu1—O4i 169.11 (17) O6—C5—C6 115.9 (5)
O6—Cu1—N4ii 101.47 (18) C5—C6—H6A 108.5
O8i—Cu1—O4i 88.52 (17) C5—C6—H6B 108.5
O8i—Cu1—O6 91.03 (18) H6A—C6—H6B 107.5
O8i—Cu1—N4ii 102.38 (18) C7—C6—C5 115.0 (5)
O1—Cu2—O3i 89.16 (18) C7—C6—H6A 108.5
O1—Cu2—O5 90.34 (18) C7—C6—H6B 108.5
O1—Cu2—N1 95.10 (17) C6—C7—H7A 108.6
O3i—Cu2—N1 99.11 (18) C6—C7—H7B 108.6
O5—Cu2—O3i 166.52 (17) H7A—C7—H7B 107.6
O5—Cu2—N1 94.36 (18) C8—C7—C6 114.6 (5)
O7i—Cu2—O1 168.62 (18) C8—C7—H7A 108.6
O7i—Cu2—O3i 88.50 (18) C8—C7—H7B 108.6
O7i—Cu2—O5 89.35 (19) O7—C8—O8 126.2 (6)
O7i—Cu2—N1 96.27 (18) O7—C8—C7 117.2 (6)
C1—O1—Cu2 119.2 (4) O8—C8—C7 116.6 (5)
C1—O2—Cu1 127.8 (4) N1—C9—H9 119.2
C4—O3—Cu2iii 123.8 (4) N1—C9—C10 121.6 (6)
C4—O4—Cu1iii 122.6 (4) C10—C9—H9 119.2
C5—O5—Cu2 124.8 (4) C9—C10—H10 120.2
C5—O6—Cu1 121.1 (4) C11—C10—C9 119.7 (6)
C8—O7—Cu2iii 125.0 (4) C11—C10—H10 120.2
C8—O8—Cu1iii 120.7 (4) C10—C11—H11 120.3
C9—N1—Cu2 120.0 (4) C10—C11—C12 119.5 (6)
C9—N1—C13 119.1 (5) C12—C11—H11 120.3
C13—N1—Cu2 120.7 (4) C11—C12—N2 118.4 (6)
C12—N2—H2 116.9 C13—C12—N2 123.7 (6)
C14—N2—H2 116.9 C13—C12—C11 117.9 (6)
C14—N2—C12 126.1 (5) N1—C13—C12 122.3 (6)
C14—N3—H3 116.7 N1—C13—H13 118.8
C14—N3—C18 126.5 (5) C12—C13—H13 118.8
C18—N3—H3 116.7 O9—C14—N2 123.6 (6)
C15—N4—Cu1iv 129.1 (4) O9—C14—N3 122.9 (6)
C19—N4—Cu1iv 111.2 (4) N2—C14—N3 113.4 (6)
C19—N4—C15 118.6 (6) N4—C15—H15 119.2
O1—C1—C2 118.4 (5) N4—C15—C16 121.5 (6)
O2—C1—O1 124.7 (6) C16—C15—H15 119.2
O2—C1—C2 116.9 (5) C15—C16—H16 120.3
C1—C2—H2A 108.9 C17—C16—C15 119.4 (6)
C1—C2—H2B 108.9 C17—C16—H16 120.3
C1—C2—C3 113.5 (5) C16—C17—H17 120.5
H2A—C2—H2B 107.7 C18—C17—C16 119.0 (6)
C3—C2—H2A 108.9 C18—C17—H17 120.5
C3—C2—H2B 108.9 C17—C18—N3 120.1 (6)
C2—C3—H3A 108.6 C17—C18—C19 117.7 (6)
C2—C3—H3B 108.6 C19—C18—N3 122.1 (6)
H3A—C3—H3B 107.5 N4—C19—C18 123.7 (6)
C4—C3—C2 114.8 (5) N4—C19—H19 118.2
C4—C3—H3A 108.6 C18—C19—H19 118.2
C4—C3—H3B 108.6
Cu1—O2—C1—O1 4.2 (9) N4—C15—C16—C17 −1.5 (9)
Cu1—O2—C1—C2 −175.2 (4) C1—C2—C3—C4 −78.3 (7)
Cu1iii—O4—C4—O3 5.2 (8) C2—C3—C4—O3 −22.2 (8)
Cu1iii—O4—C4—C3 −177.9 (4) C2—C3—C4—O4 160.7 (5)
Cu1—O6—C5—O5 2.4 (9) C5—C6—C7—C8 75.8 (7)
Cu1—O6—C5—C6 179.4 (4) C6—C7—C8—O7 32.4 (8)
Cu1iii—O8—C8—O7 0.4 (9) C6—C7—C8—O8 −149.6 (5)
Cu1iii—O8—C8—C7 −177.5 (4) C9—N1—C13—C12 0.7 (9)
Cu1iv—N4—C15—C16 167.8 (4) C9—C10—C11—C12 0.3 (9)
Cu1iv—N4—C19—C18 −169.4 (5) C10—C11—C12—N2 179.0 (6)
Cu2—O1—C1—O2 4.5 (8) C10—C11—C12—C13 0.0 (9)
Cu2—O1—C1—C2 −176.2 (4) C11—C12—C13—N1 −0.5 (9)
Cu2iii—O3—C4—O4 0.4 (8) C12—N2—C14—O9 −6.2 (9)
Cu2iii—O3—C4—C3 −176.4 (4) C12—N2—C14—N3 175.0 (5)
Cu2—O5—C5—O6 2.4 (9) C13—N1—C9—C10 −0.3 (9)
Cu2—O5—C5—C6 −174.6 (4) C14—N2—C12—C11 174.2 (5)
Cu2iii—O7—C8—O8 5.8 (9) C14—N2—C12—C13 −6.8 (9)
Cu2iii—O7—C8—C7 −176.4 (4) C14—N3—C18—C17 −166.6 (6)
Cu2—N1—C9—C10 174.5 (5) C14—N3—C18—C19 16.7 (9)
Cu2—N1—C13—C12 −174.1 (4) C15—N4—C19—C18 −0.2 (9)
O1—C1—C2—C3 157.7 (5) C15—C16—C17—C18 1.6 (9)
O2—C1—C2—C3 −22.9 (8) C16—C17—C18—N3 −177.7 (5)
O5—C5—C6—C7 −150.1 (6) C16—C17—C18—C19 −0.9 (9)
O6—C5—C6—C7 32.6 (8) C17—C18—C19—N4 0.3 (9)
N1—C9—C10—C11 −0.2 (10) C18—N3—C14—O9 −1.0 (10)
N2—C12—C13—N1 −179.5 (5) C18—N3—C14—N2 177.8 (5)
N3—C18—C19—N4 177.0 (5) C19—N4—C15—C16 0.8 (9)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4v 0.88 2.21 3.042 (6) 157
N3—H3···O4v 0.88 2.36 3.174 (6) 154
C2—H2A···O3 0.99 2.48 2.815 (7) 100
C3—H3A···O2 0.99 2.38 2.744 (7) 101
C6—H6A···O7 0.99 2.47 2.825 (7) 100
C7—H7B···O6 0.99 2.47 2.824 (8) 101
C9—H9···O5 0.95 2.74 3.196 (8) 110
C13—H13···O9 0.95 2.17 2.800 (8) 123
C19—H19···O2iv 0.95 2.35 2.965 (8) 122
C19—H19···O4vi 0.95 2.84 3.126 (7) 98
C19—H19···O9 0.95 2.15 2.786 (8) 124

Symmetry codes: (iv) −x+1, y−1/2, −z+1/2; (v) x, −y+3/2, z+1/2; (vi) −x+1, y−3/2, −z+1/2.

Funding Statement

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  8. Uebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). Cryst. Growth Des. 13, 2220–2232.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623007472/bh4078sup1.cif

x-08-x230747-sup1.cif (504.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007472/bh4078Isup2.hkl

x-08-x230747-Isup2.hkl (299.8KB, hkl)

CCDC reference: 2290886

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES