Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 22;8(Pt 9):x230821. doi: 10.1107/S2414314623008210

4-Amino-3,5-di­chloro­pyridinium 3-hy­droxy­pico­linate monohydrate

Agalya Ashokan a, Jayasudha Nehru a, Nandhini Chakkarapani b, Themmila Khamrang c, Savaridasan Jose Kavitha a, Venkatachalam Rajakannan b, Madhukar Hemamalini a,*
Editor: W T A Harrisond
PMCID: PMC10561231  PMID: 37818469

The title hydrated salt features a dense array of hydrogen bonds, forming a three-dimensional network.

Keywords: crystal structure, hydrogen bonding, hydrated salt

Abstract

In the title hydrated salt, C5H5Cl2N2 +·C6H4NO3 ·H2O, the pyridine N atom of the cation is protonated and an intra­molecular O—H⋯O hydrogen bond is observed in the anion, which generates an S(6) ring. The crystal packing features N—H⋯N, O—H⋯O, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds, which generate a three-dimensional network. graphic file with name x-08-x230821-scheme1-3D1.jpg

Structure description

4-Amino­pyridine and its derivatives are used clinically to treat Lambert–Eaton myasthenic syndrome and multiple sclerosis because they block potassium channels, which prolongs action potentials and increases transmitter release at the neuromuscular junction (Judge & Bever, 2006). Picolinic acid, which contains N and O donors, has attracted much attention for the design and synthesis of self-assembling systems (e.g., Steiner, 2002). In this regard, 3-hy­droxy­picolinic acid is of inter­est because it can be used as a neutral ligand or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the arrangement of its functional groups, it can act as a monodentate or bidentate ligand, which allows it to form five- or six-membered chelate rings. As part of our work in this area, we now report the synthesis and structure of the title hydrated mol­ecular salt.

The asymmetric unit (Fig. 1) of the title salt contains a 4-amino-3,5-di­chloro­pyridinium cation, a 3-hy­droxy picolinate anion and a water mol­ecule. The pyridinium cation is essentially planar, with a maximum deviation of 0.010 (2) Å for atom C2. A wider than normal angle [C5—N1—C1 = 120.41 (12)°] is subtended at the protonated N1 atom. In the anion, a typical intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring, is seen. In the extended structure, the cations, anions and water mol­ecules are connected by N—H⋯N, O—H⋯O, C—H⋯Cl, N—H⋯O and C—H⋯O hydrogen bonds (Table 1), forming a three-dimensional network (Figs. 2 and 3).

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing 50% displacement ellipsoids. The intra­molecular hydrogen bond is shown with dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.79 2.5155 (17) 147
N1—H1⋯N3i 0.86 1.90 2.7546 (17) 171
N2—H2A⋯O1W ii 0.86 2.13 2.9414 (17) 157
N2—H2B⋯O1W iii 0.86 2.05 2.8269 (17) 149
O1W—H1W⋯O2 0.85 1.90 2.7442 (17) 170
O1W—H2W⋯O1iv 0.85 1.98 2.8181 (18) 170
C5—H5⋯O1i 0.93 2.31 2.9864 (18) 129
C5—H5⋯Cl2v 0.93 2.97 3.7363 (16) 141
C7—H7⋯O3vi 0.93 2.52 3.399 (2) 157

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

One-dimensional supra­molecular hydrogen-bonded chain mediated by water mol­ecules in the title compound.

Figure 3.

Figure 3

Crystal packing viewed down [100] in the title compound.

A search of the Cambridge Structural Database (Version 5.43, update November 2022; Groom et al., 2016) for the 3,5-di­chloro-4-amino pyridine fragment with additional substit­uents yielded hexa­aqua­magnesium(II) bis­(4-amino-3,5,6-tri­chloro-picolinate) tetra­hydrate (CSD refcode BAWGOV; Smith et al., 1981), [(4-amino-3,5-di­chloro-6-fluoro­pyridin-2-yl)­oxy]acetic acid (EZONOY; Park et al., 2016), sodium picloramate hexa­hydrate (CURLIM; Smith et al., 2015), guanidinium 4-amino-3,5,6-tri­chloro­picolinate (GUPICL10; Parthasarathi et al., 1982), and 6-chloro-3-(tri­fluoro­meth­oxy)pyridine-2-carb­oxy­lic acid (MAFTEU; Manteau et al., 2010).

Synthesis and crystallization

A hot methanol solution of 3-hy­droxy picolinic acid (40 mg) was mixed with a hot aqueous solution of 4-amino 3,5-di­chloro pyridine (34 mg). The mixture was cooled slowly and kept at room temperature. After a few days, colourless block shaped crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C5H5Cl2N2 +·C6H4NO3 ·H2O
M r 320.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4267 (19), 14.084 (3), 10.900 (2)
β (°) 91.953 (8)
V3) 1292.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.46 × 0.32 × 0.13
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan
T min, T max 0.819, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 45801, 3296, 2853
R int 0.038
(sin θ/λ)max−1) 0.675
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.091, 1.03
No. of reflections 3296
No. of parameters 185
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.35

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623008210/hb4452sup1.cif

x-08-x230821-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623008210/hb4452Isup2.hkl

x-08-x230821-Isup2.hkl (263.2KB, hkl)

CCDC reference: 2294939

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C5H5Cl2N2+·C6H4NO3·H2O F(000) = 656
Mr = 320.13 Dx = 1.645 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.4267 (19) Å Cell parameters from 3676 reflections
b = 14.084 (3) Å θ = 2.5–28.8°
c = 10.900 (2) Å µ = 0.52 mm1
β = 91.953 (8)° T = 296 K
V = 1292.9 (5) Å3 Plate, colourless
Z = 4 0.46 × 0.32 × 0.13 mm

Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer 2853 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.038
ω scans θmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan h = −11→11
Tmin = 0.819, Tmax = 0.937 k = −18→18
45801 measured reflections l = −14→14
3296 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3959P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3296 reflections Δρmax = 0.24 e Å3
185 parameters Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The water H atoms were located in a difference Fourier map and allowed to refine freely. The remaining H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85851 (4) 0.68420 (3) 0.15096 (4) 0.04683 (12)
Cl2 0.89478 (5) 0.30311 (2) 0.10521 (4) 0.04737 (12)
O1 0.42463 (12) 0.67099 (7) 0.27823 (11) 0.0439 (3)
O2 0.61861 (13) 0.71788 (7) 0.40818 (11) 0.0459 (3)
O3 0.82471 (14) 0.60173 (8) 0.48694 (13) 0.0535 (3)
H3 0.780642 0.653220 0.477230 0.080*
N3 0.50360 (13) 0.48436 (8) 0.31752 (10) 0.0321 (2)
N1 1.19792 (14) 0.49866 (8) 0.22147 (11) 0.0371 (3)
H1 1.294531 0.500301 0.249479 0.045*
N2 0.73770 (13) 0.49223 (8) 0.08094 (11) 0.0355 (3)
H2A 0.685153 0.544264 0.072057 0.043*
H2B 0.694906 0.439155 0.059109 0.043*
C10 0.59379 (14) 0.55395 (9) 0.36845 (11) 0.0288 (3)
C11 0.53872 (15) 0.65512 (9) 0.34965 (13) 0.0326 (3)
C3 0.88438 (14) 0.49383 (9) 0.12820 (11) 0.0291 (3)
C4 0.96128 (15) 0.57881 (9) 0.16585 (12) 0.0321 (3)
C6 0.73510 (16) 0.53325 (10) 0.43364 (13) 0.0353 (3)
C2 0.97853 (16) 0.41096 (9) 0.14404 (12) 0.0325 (3)
C5 1.11412 (16) 0.57934 (10) 0.21103 (13) 0.0362 (3)
H5 1.160941 0.636508 0.234961 0.043*
C1 1.13192 (17) 0.41529 (10) 0.18845 (13) 0.0373 (3)
H1A 1.191375 0.359836 0.195919 0.045*
C9 0.55198 (17) 0.39478 (10) 0.32671 (14) 0.0388 (3)
H9 0.488901 0.347163 0.291583 0.047*
C8 0.69351 (18) 0.37002 (10) 0.38699 (15) 0.0428 (3)
H8 0.725723 0.306886 0.390273 0.051*
C7 0.78549 (17) 0.43927 (11) 0.44166 (15) 0.0431 (3)
H7 0.880028 0.423758 0.483433 0.052*
O1W 0.48614 (13) 0.86692 (8) 0.53048 (11) 0.0441 (3)
H1W 0.518086 0.816660 0.495934 0.066*
H2W 0.462944 0.849278 0.602250 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0388 (2) 0.03527 (19) 0.0658 (3) 0.00513 (13) −0.00686 (17) −0.01076 (16)
Cl2 0.0497 (2) 0.03070 (18) 0.0608 (3) −0.00776 (14) −0.01108 (18) 0.00405 (15)
O1 0.0385 (5) 0.0339 (5) 0.0585 (7) 0.0032 (4) −0.0120 (5) 0.0042 (5)
O2 0.0429 (6) 0.0320 (5) 0.0621 (7) −0.0008 (4) −0.0073 (5) −0.0116 (5)
O3 0.0416 (6) 0.0449 (6) 0.0723 (8) −0.0023 (5) −0.0249 (6) −0.0072 (6)
N3 0.0294 (5) 0.0297 (5) 0.0371 (6) 0.0000 (4) −0.0023 (4) −0.0008 (4)
N1 0.0295 (5) 0.0419 (6) 0.0393 (6) −0.0021 (5) −0.0075 (5) 0.0026 (5)
N2 0.0278 (5) 0.0345 (6) 0.0438 (6) −0.0027 (4) −0.0051 (5) −0.0019 (5)
C10 0.0268 (6) 0.0282 (6) 0.0313 (6) −0.0006 (5) 0.0004 (5) −0.0009 (5)
C11 0.0294 (6) 0.0290 (6) 0.0397 (7) 0.0010 (5) 0.0023 (5) −0.0010 (5)
C3 0.0273 (6) 0.0342 (6) 0.0258 (6) −0.0031 (5) 0.0007 (5) 0.0009 (5)
C4 0.0299 (6) 0.0327 (6) 0.0335 (6) −0.0009 (5) −0.0010 (5) −0.0027 (5)
C6 0.0290 (6) 0.0371 (7) 0.0396 (7) −0.0004 (5) −0.0039 (5) 0.0003 (6)
C2 0.0340 (6) 0.0304 (6) 0.0329 (6) −0.0047 (5) −0.0028 (5) 0.0039 (5)
C5 0.0323 (6) 0.0387 (7) 0.0374 (7) −0.0054 (5) −0.0035 (5) −0.0036 (6)
C1 0.0357 (7) 0.0363 (7) 0.0396 (7) 0.0008 (5) −0.0048 (6) 0.0065 (6)
C9 0.0387 (7) 0.0292 (6) 0.0483 (8) −0.0009 (5) −0.0021 (6) −0.0018 (6)
C8 0.0413 (8) 0.0320 (7) 0.0549 (9) 0.0084 (6) 0.0016 (7) 0.0068 (6)
C7 0.0327 (7) 0.0436 (8) 0.0526 (9) 0.0074 (6) −0.0066 (6) 0.0075 (7)
O1W 0.0418 (6) 0.0358 (5) 0.0542 (7) 0.0069 (4) −0.0077 (5) −0.0016 (5)

Geometric parameters (Å, º)

Cl1—C4 1.7233 (14) C10—C11 1.5103 (18)
Cl2—C2 1.7217 (14) C3—C4 1.4151 (17)
O1—C11 1.2366 (17) C3—C2 1.4184 (18)
O2—C11 1.2697 (17) C4—C5 1.3631 (18)
O3—C6 1.3446 (17) C6—C7 1.392 (2)
O3—H3 0.8200 C2—C1 1.3661 (19)
N3—C9 1.3287 (18) C5—H5 0.9300
N3—C10 1.3481 (16) C1—H1A 0.9300
N1—C5 1.3406 (18) C9—C8 1.386 (2)
N1—C1 1.3430 (18) C9—H9 0.9300
N1—H1 0.8600 C8—C7 1.370 (2)
N2—C3 1.3229 (16) C8—H8 0.9300
N2—H2A 0.8600 C7—H7 0.9300
N2—H2B 0.8600 O1W—H1W 0.8499
C10—C6 1.3965 (18) O1W—H2W 0.8500
C6—O3—H3 109.5 O3—C6—C10 121.79 (13)
C9—N3—C10 119.47 (12) C7—C6—C10 118.91 (13)
C5—N1—C1 120.41 (12) C1—C2—C3 121.66 (12)
C5—N1—H1 119.8 C1—C2—Cl2 120.10 (11)
C1—N1—H1 119.8 C3—C2—Cl2 118.24 (10)
C3—N2—H2A 120.0 N1—C5—C4 120.96 (13)
C3—N2—H2B 120.0 N1—C5—H5 119.5
H2A—N2—H2B 120.0 C4—C5—H5 119.5
N3—C10—C6 121.12 (12) N1—C1—C2 120.81 (13)
N3—C10—C11 117.62 (11) N1—C1—H1A 119.6
C6—C10—C11 121.24 (11) C2—C1—H1A 119.6
O1—C11—O2 125.31 (13) N3—C9—C8 122.09 (13)
O1—C11—C10 118.99 (12) N3—C9—H9 119.0
O2—C11—C10 115.68 (12) C8—C9—H9 119.0
N2—C3—C4 122.67 (12) C7—C8—C9 119.48 (13)
N2—C3—C2 123.00 (12) C7—C8—H8 120.3
C4—C3—C2 114.33 (11) C9—C8—H8 120.3
C5—C4—C3 121.81 (12) C8—C7—C6 118.88 (13)
C5—C4—Cl1 119.66 (11) C8—C7—H7 120.6
C3—C4—Cl1 118.52 (10) C6—C7—H7 120.6
O3—C6—C7 119.29 (12) H1W—O1W—H2W 104.5
C9—N3—C10—C6 −1.8 (2) C4—C3—C2—C1 −1.97 (19)
C9—N3—C10—C11 176.65 (12) N2—C3—C2—Cl2 −2.54 (18)
N3—C10—C11—O1 −7.84 (19) C4—C3—C2—Cl2 178.22 (10)
C6—C10—C11—O1 170.60 (13) C1—N1—C5—C4 −0.6 (2)
N3—C10—C11—O2 173.80 (12) C3—C4—C5—N1 0.0 (2)
C6—C10—C11—O2 −7.76 (19) Cl1—C4—C5—N1 −178.74 (11)
N2—C3—C4—C5 −178.05 (13) C5—N1—C1—C2 −0.2 (2)
C2—C3—C4—C5 1.20 (19) C3—C2—C1—N1 1.5 (2)
N2—C3—C4—Cl1 0.74 (18) Cl2—C2—C1—N1 −178.65 (11)
C2—C3—C4—Cl1 179.99 (10) C10—N3—C9—C8 −0.2 (2)
N3—C10—C6—O3 −178.70 (13) N3—C9—C8—C7 1.6 (2)
C11—C10—C6—O3 2.9 (2) C9—C8—C7—C6 −0.9 (2)
N3—C10—C6—C7 2.4 (2) O3—C6—C7—C8 −179.94 (15)
C11—C10—C6—C7 −175.97 (13) C10—C6—C7—C8 −1.0 (2)
N2—C3—C2—C1 177.27 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.82 1.79 2.5155 (17) 147
N1—H1···N3i 0.86 1.90 2.7546 (17) 171
N2—H2A···O1Wii 0.86 2.13 2.9414 (17) 157
N2—H2B···O1Wiii 0.86 2.05 2.8269 (17) 149
O1W—H1W···O2 0.85 1.90 2.7442 (17) 170
O1W—H2W···O1iv 0.85 1.98 2.8181 (18) 170
C5—H5···O1i 0.93 2.31 2.9864 (18) 129
C5—H5···Cl2v 0.93 2.97 3.7363 (16) 141
C7—H7···O3vi 0.93 2.52 3.399 (2) 157

Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+3/2, z+1/2; (v) −x+2, y+1/2, −z+1/2; (vi) −x+2, −y+1, −z+1.

Funding Statement

MH thanks SERB-IRE for financial support (Ref. No. SIR/2022/000011). SJK thanks TANSCHE for financial support (File No. RGP/2019–20/MTWU/HECP-0080).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259. [DOI] [PubMed]
  4. Manteau, B., Genix, P., Brelot, L., Vors, J.-P., Pazenok, S., Giornal, F., Leuenberger, C. & Leroux, F. R. (2010). Eur. J. Org. Chem. 604.
  5. Park, H., Choi, M. Y., Kwon, E. & Kim, T. H. (2016). Acta Cryst. E72, 1836–1838. [DOI] [PMC free article] [PubMed]
  6. Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., Reilly, E. J. O. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519.
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Smith, G. (2015). Acta Cryst. E71, 931–933. [DOI] [PMC free article] [PubMed]
  10. Smith, G., Reilly, E. J. O. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1277.
  11. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  12. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623008210/hb4452sup1.cif

x-08-x230821-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623008210/hb4452Isup2.hkl

x-08-x230821-Isup2.hkl (263.2KB, hkl)

CCDC reference: 2294939

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES