Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 14;8(Pt 9):x230784. doi: 10.1107/S2414314623007848

1-Ethyl-4-isopropyl-1,2,4-triazolium bromide

Aaron Maynard a, Taylor M Keller b, Michael Gau b, Daniel R Albert a, Edward Rajaseelan a,*
Editor: W T A Harrisonc
PMCID: PMC10561235  PMID: 37818465

The title compound crystallizes with Z = 6 in space group P21/m.

Keywords: crystal structure, triazolium salt, heterocyclic ionic compound

Abstract

An ionic compound consisting of a triazolium cation and bromide anion, C7H14N3 +·Br, has been synthesized and structurally characterized using single-crystal X-ray diffraction and NMR. The compound crystallizes in the monoclinic space group P21/m with the non-hydrogen atoms of one cation lying on general positions and the others lying on a mirror plane. One bromide ion also lies on the mirror. The extended structure exhibits only weak inter­molecular inter­actions between heterocyclic C—H groups and Br ions. graphic file with name x-08-x230784-scheme1-3D1.jpg

Structure description

Asymmetric 1,2,4-triazolium cations are of inter­est due to their utility as cations in ionic liquids (ILs) and as precursors to N-heterocyclic carbenes (NHCs) (Dwivedi et al., 2014; Nelson, 2015; Strassner et al., 2013; Riederer et al., 2011; Chianese et al., 2004). The crystal structures of several triazolium salts have been reported (Peña Hueso et al., 2022; Kumasaki et al., 2021; Ponjan et al., 2020; Guino-o et al., 2015). We have synthesized many imidazolium and triazolium salts as precursors in the synthesis of NHC complexes of rhodium and iridium (Castaldi et al., 2021; Gnanamgari et al., 2007; Idrees et al., 2017; Nichol et al., 2011; Newman et al., 2021; Rushlow et al., 2022).

The mol­ecular structure of the title compound is shown in Fig. 1. There are one and a half mol­ecules in the asymmetric unit with the non-hydrogen atoms of the N1 cation (except C4) and Br1 lying on the (x, 3/4, z) mirror plane. All the atoms of the N4 cation and Br2 occupy general positions. The bond lengths in the triazolium rings indicate aromaticity with C—N bonds exhibiting distances in the range of 1.305 (2)–1.366 (2) Å and N—N bond distances near 1.365 Å; the N—C—N bond angles in the triazolium ring range from 106.93 (18) to 111.35 (18)°. The C1—N2—C5—C6 torsion angle of the ethyl side chain in the N1 cation is constrained to be 0° by symmetry and the corresponding C8—N5—C12—C13 torsion angle in the N4 cation is 24.4 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The N1 mol­ecule (except C4) and Br1 lie on the (x, 3/4, z) mirror plane. Atom C4i is generated by the symmetry operation x, Inline graphic  − y, z.

The crystal packing of the title compound is displayed in Fig. 2. There are weak non-classical hydrogen-bonding inter­actions between the heterocyclic C—H groupings and bromide ions. These weak inter­actions are shown as dotted red lines in Fig. 2 and summarized in Table 1.

Figure 2.

Figure 2

Crystal packing of the title compound shown along the a axis. Non-classical C—H⋯Br hydrogen-bonding inter­actions are shown as dotted red lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.67 3.610 (2) 170
C2—H2⋯Br2i 0.95 2.70 3.6344 (18) 166
C7—H7⋯Br2i 0.95 2.69 3.6316 (15) 170
C8—H8⋯Br2i 0.95 2.68 3.5635 (15) 156

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

1-Ethyl triazole was purchased from AmBeed. All other compounds used in the syntheses of the title compound were obtained from Sigma-Aldrich. All materials in the synthesis were used as received. The synthesis was performed under nitro­gen using reagent grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.).

1-Ethyl-1,2,4-triazole (2.01 g, 20.61 mmol) and isopropyl bromide (10.14 g, 82.4 mmol) were added to toluene (20 ml) and the mixture was refluxed for 48 h. Once cooled, the liquid was deca­nted, the white solid product that formed was washed with ether, filtered, and dried. The title compound crystallized as clear needles by slow diffusion of pentane into a CH2Cl2 solution. Yield: 1.04 g (23%). 1H NMR: CDCl3, δ (p.p.m.) 11.99 (s, 1 H, N—C5H—N), 8.85 (s, 1 H, N—C3H—N), 5.13 (m, 1 H, CH(CH3)2), 4.63 (q, 2 H, N—CH2), 1.74 (d, 6 H, CH(CH3)2), 1.65 (t, 3 H, CH2CH3). 13C NMR: δ (p.p.m.) 142.27 (N—CH—N), 141.84 (N—CH—N), 53.15 [CH(CH3)2], 48.36 (N—CH2), 23.14 [CH(CH3)2], 14.22 (N—CH2CH3).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C7H14N3 +·Br
M r 220.12
Crystal system, space group Monoclinic, P21/m
Temperature (K) 100
a, b, c (Å) 8.1283 (2), 21.3822 (7), 8.6376 (2)
β (°) 101.713 (3)
V3) 1469.96 (7)
Z 6
Radiation type Mo Kα
μ (mm−1) 4.14
Crystal size (mm) 0.38 × 0.25 × 0.04
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD; 2022)
T min, T max 0.483, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23168, 3747, 3142
R int 0.036
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.022, 0.052, 1.04
No. of reflections 3747
No. of parameters 168
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.29

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007848/hb4448sup1.cif

x-08-x230784-sup1.cif (678.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007848/hb4448Isup2.hkl

x-08-x230784-Isup2.hkl (298.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007848/hb4448Isup3.cml

CCDC reference: 2293675

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

AM was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

full crystallographic data

Crystal data

C7H14N3+·Br F(000) = 672
Mr = 220.12 Dx = 1.492 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
a = 8.1283 (2) Å Cell parameters from 9609 reflections
b = 21.3822 (7) Å θ = 3.1–28.2°
c = 8.6376 (2) Å µ = 4.14 mm1
β = 101.713 (3)° T = 100 K
V = 1469.96 (7) Å3 Plate, colourless
Z = 6 0.38 × 0.25 × 0.04 mm

Data collection

Rigaku XtaLAB Synergy-S diffractometer 3747 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 3142 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.036
Detector resolution: 10.0000 pixels mm-1 θmax = 28.3°, θmin = 2.6°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD; 2022) k = −27→28
Tmin = 0.483, Tmax = 1.000 l = −11→11
23168 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.254P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3747 reflections Δρmax = 0.38 e Å3
168 parameters Δρmin = −0.29 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.65535 (3) 0.750000 0.86475 (2) 0.01997 (6)
Br2 0.36575 (2) 0.58378 (2) 1.16793 (2) 0.01912 (5)
N1 0.5536 (2) 0.750000 0.34816 (19) 0.0180 (4)
N2 0.3012 (2) 0.750000 0.22004 (19) 0.0181 (4)
N3 0.2904 (2) 0.750000 0.3756 (2) 0.0225 (4)
C1 0.4576 (3) 0.750000 0.2031 (2) 0.0175 (4)
H1 0.495511 0.750000 0.106069 0.021*
C2 0.4471 (3) 0.750000 0.4505 (2) 0.0209 (4)
H2 0.482097 0.750000 0.562368 0.025*
C3 0.7407 (3) 0.750000 0.3888 (3) 0.0277 (5)
H3 0.777584 0.750000 0.506529 0.033*
C4 0.8056 (2) 0.80896 (8) 0.3239 (2) 0.0324 (4)
H4A 0.772489 0.809040 0.208337 0.049*
H4B 0.928441 0.810248 0.355041 0.049*
H4C 0.757925 0.845690 0.366538 0.049*
C5 0.1468 (3) 0.750000 0.0987 (3) 0.0315 (6)
H5A 0.079611 0.787411 0.112921 0.038* 0.5
H5B 0.079611 0.712589 0.112921 0.038* 0.5
C6 0.1791 (3) 0.750000 −0.0638 (3) 0.0353 (6)
H6A 0.225946 0.790528 −0.085598 0.053* 0.5
H6B 0.073605 0.742719 −0.139517 0.053* 0.5
H6C 0.259308 0.716754 −0.073790 0.053* 0.5
N4 0.45707 (16) 0.58697 (5) 0.70657 (14) 0.0163 (3)
N5 0.71989 (15) 0.59178 (5) 0.80363 (14) 0.0170 (3)
N6 0.70540 (17) 0.59818 (6) 0.64405 (15) 0.0234 (3)
C7 0.5439 (2) 0.59462 (7) 0.58810 (18) 0.0223 (3)
H7 0.493358 0.597046 0.478994 0.027*
C8 0.57173 (19) 0.58536 (6) 0.84100 (17) 0.0167 (3)
H8 0.550409 0.580476 0.944460 0.020*
C9 0.27440 (18) 0.57739 (7) 0.69275 (18) 0.0198 (3)
H9 0.249096 0.576878 0.801314 0.024*
C10 0.1780 (2) 0.63095 (8) 0.6001 (2) 0.0296 (4)
H10A 0.218468 0.670794 0.649669 0.044*
H10B 0.057966 0.626396 0.599636 0.044*
H10C 0.195525 0.630178 0.491108 0.044*
C11 0.2264 (2) 0.51438 (8) 0.61529 (19) 0.0287 (4)
H11A 0.240093 0.515644 0.505186 0.043*
H11B 0.109054 0.505046 0.618208 0.043*
H11C 0.299190 0.481809 0.672508 0.043*
C12 0.88457 (19) 0.59542 (8) 0.9095 (2) 0.0242 (3)
H12A 0.917169 0.639848 0.927513 0.029*
H12B 0.969276 0.574799 0.859048 0.029*
C13 0.8832 (2) 0.56445 (8) 1.06588 (18) 0.0246 (3)
H13A 0.847326 0.520823 1.048013 0.037*
H13B 0.804907 0.586585 1.119266 0.037*
H13C 0.996325 0.565779 1.132088 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02633 (12) 0.01928 (12) 0.01483 (11) 0.000 0.00543 (8) 0.000
Br2 0.01946 (8) 0.02267 (9) 0.01542 (8) −0.00045 (5) 0.00400 (6) −0.00014 (5)
N1 0.0180 (9) 0.0217 (9) 0.0145 (8) 0.000 0.0036 (7) 0.000
N2 0.0193 (9) 0.0205 (9) 0.0149 (8) 0.000 0.0043 (7) 0.000
N3 0.0242 (10) 0.0261 (10) 0.0194 (9) 0.000 0.0094 (7) 0.000
C1 0.0181 (10) 0.0194 (11) 0.0142 (10) 0.000 0.0015 (8) 0.000
C2 0.0265 (11) 0.0219 (11) 0.0154 (10) 0.000 0.0066 (9) 0.000
C3 0.0196 (11) 0.0469 (15) 0.0148 (10) 0.000 −0.0009 (9) 0.000
C4 0.0238 (8) 0.0396 (10) 0.0359 (9) −0.0128 (7) 0.0108 (7) −0.0165 (8)
C5 0.0159 (11) 0.0541 (16) 0.0222 (12) 0.000 −0.0021 (9) 0.000
C6 0.0224 (12) 0.0617 (18) 0.0196 (11) 0.000 −0.0007 (9) 0.000
N4 0.0165 (6) 0.0197 (7) 0.0132 (6) 0.0001 (5) 0.0040 (5) 0.0014 (4)
N5 0.0169 (6) 0.0181 (7) 0.0171 (6) −0.0005 (5) 0.0059 (5) 0.0009 (4)
N6 0.0244 (7) 0.0275 (7) 0.0204 (7) −0.0008 (5) 0.0093 (5) −0.0004 (5)
C7 0.0236 (8) 0.0278 (9) 0.0167 (7) −0.0001 (6) 0.0068 (6) −0.0005 (6)
C8 0.0170 (7) 0.0164 (7) 0.0170 (7) 0.0000 (5) 0.0041 (6) 0.0013 (5)
C9 0.0138 (7) 0.0284 (9) 0.0169 (7) −0.0003 (6) 0.0023 (6) 0.0025 (6)
C10 0.0242 (8) 0.0386 (10) 0.0273 (8) 0.0118 (7) 0.0077 (7) 0.0102 (7)
C11 0.0231 (8) 0.0329 (9) 0.0280 (8) −0.0061 (7) 0.0003 (7) −0.0008 (7)
C12 0.0134 (7) 0.0286 (9) 0.0302 (9) −0.0012 (6) 0.0035 (6) 0.0032 (7)
C13 0.0187 (8) 0.0305 (9) 0.0232 (8) 0.0006 (6) 0.0013 (6) −0.0004 (6)

Geometric parameters (Å, º)

N1—C1 1.335 (2) N4—C7 1.366 (2)
N1—C2 1.357 (3) N4—C8 1.3337 (19)
N1—C3 1.490 (3) N4—C9 1.4795 (19)
N2—N3 1.364 (2) N5—N6 1.3662 (18)
N2—C1 1.308 (3) N5—C8 1.316 (2)
N2—C5 1.463 (3) N5—C12 1.4618 (19)
N3—C2 1.307 (3) N6—C7 1.305 (2)
C3—C4 1.517 (2) C9—C10 1.520 (2)
C3—C4i 1.517 (2) C9—C11 1.520 (2)
C5—C6 1.480 (3) C12—C13 1.507 (2)
C1—N1—C2 106.43 (18) C7—N4—C9 128.25 (12)
C1—N1—C3 126.56 (18) C8—N4—C7 106.21 (13)
C2—N1—C3 127.01 (17) C8—N4—C9 125.39 (13)
N3—N2—C5 119.20 (18) N6—N5—C12 120.41 (13)
C1—N2—N3 111.63 (16) C8—N5—N6 111.24 (12)
C1—N2—C5 129.18 (18) C8—N5—C12 128.29 (13)
C2—N3—N2 103.67 (18) C7—N6—N5 104.00 (13)
N2—C1—N1 106.93 (18) N6—C7—N4 111.31 (13)
N3—C2—N1 111.35 (18) N5—C8—N4 107.24 (13)
N1—C3—C4i 109.14 (11) N4—C9—C10 109.85 (12)
N1—C3—C4 109.14 (11) N4—C9—C11 108.78 (12)
C4—C3—C4i 112.4 (2) C11—C9—C10 112.16 (13)
N2—C5—C6 112.79 (19) N5—C12—C13 111.39 (13)
N2—N3—C2—N1 0.000 (1) N5—N6—C7—N4 0.69 (16)
N3—N2—C1—N1 0.000 (1) N6—N5—C8—N4 0.42 (15)
N3—N2—C5—C6 180.000 (1) N6—N5—C12—C13 −158.90 (13)
C1—N1—C2—N3 0.000 (1) C7—N4—C8—N5 0.01 (15)
C1—N1—C3—C4i −61.59 (13) C7—N4—C9—C10 −56.70 (19)
C1—N1—C3—C4 61.59 (13) C7—N4—C9—C11 66.41 (18)
C1—N2—N3—C2 0.000 (1) C8—N4—C7—N6 −0.46 (16)
C1—N2—C5—C6 0.000 (1) C8—N4—C9—C10 128.34 (14)
C2—N1—C1—N2 0.000 (1) C8—N4—C9—C11 −108.55 (15)
C2—N1—C3—C4i 118.41 (13) C8—N5—N6—C7 −0.69 (16)
C2—N1—C3—C4 −118.41 (13) C8—N5—C12—C13 24.4 (2)
C3—N1—C1—N2 180.000 (1) C9—N4—C7—N6 −176.18 (13)
C3—N1—C2—N3 180.000 (1) C9—N4—C8—N5 175.89 (12)
C5—N2—N3—C2 180.000 (1) C12—N5—N6—C7 −177.94 (13)
C5—N2—C1—N1 180.000 (1) C12—N5—C8—N4 177.41 (13)

Symmetry code: (i) x, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···Br1ii 0.95 2.67 3.610 (2) 170
C2—H2···Br2ii 0.95 2.70 3.6344 (18) 166
C7—H7···Br2ii 0.95 2.69 3.6316 (15) 170
C8—H8···Br2ii 0.95 2.68 3.5635 (15) 156

Symmetry code: (ii) x, y, z−1.

References

  1. Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142. [DOI] [PMC free article] [PubMed]
  2. Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatalysis, 1, 13–39.
  5. Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.
  6. Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628–635. [DOI] [PMC free article] [PubMed]
  7. Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081.
  8. Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201. [DOI] [PubMed]
  9. Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012–2027.
  10. Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836. [DOI] [PMC free article] [PubMed]
  11. Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861. [DOI] [PMC free article] [PubMed]
  12. Peña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). IUCrData, 7, x220172. [DOI] [PMC free article] [PubMed]
  13. Ponjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137–140. [DOI] [PMC free article] [PubMed]
  14. Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41–43. [DOI] [PubMed]
  15. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007848/hb4448sup1.cif

x-08-x230784-sup1.cif (678.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007848/hb4448Isup2.hkl

x-08-x230784-Isup2.hkl (298.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007848/hb4448Isup3.cml

CCDC reference: 2293675

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES