Abstract
Lipid body membranes purified from castor seed endosperm of dry seeds and 4 d old seedlings were found to have an ATPase activity associated with them. This was confirmed by equilibrium density centrifugation of the membranes using acid lipase as a marker enzyme. The specific activity ranged from 45 to 200 nanomoles per milligram protein per minute. The pH optimum was 9.0 but at pH 7.5 nearly 40% of the maximum activity was retained. The apparent Km for Mg-ATP was 0.5 millimolar. A divalent cation was required for activity and Mg2+ was the most effective. Other nucleoside triphosphates were also hydrolyzed but there was no hydrolysis of pyrophosphate or p-nitrophenylphosphate. The ATPase was not inhibited by oligomycin, vanadate, dicyclohexylcarbodiimide, or molybdate but was inhibited by sodium azide. Washing the membranes with increasing concentrations of NaCl removed up to 60% of the ATPase activity but none was removed by 3 millimolar ethylene-diaminetetraacetate.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balke N. E., Hodges T. K. Plasma membrane adenosine triphosphatase of oat roots: activation and inhibition by mg and ATP. Plant Physiol. 1975 Jan;55(1):83–86. doi: 10.1104/pp.55.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanson A., Taiz L. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles. Plant Physiol. 1985 Jun;78(2):232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
- Lin Y. H., Wimer L. T., Huang A. H. Lipase in the Lipid Bodies of Corn Scutella during Seedling Growth. Plant Physiol. 1983 Oct;73(2):460–463. doi: 10.1104/pp.73.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeshima M., Beevers H. Purification and properties of glyoxysomal lipase from castor bean. Plant Physiol. 1985 Oct;79(2):489–493. doi: 10.1104/pp.79.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau R. A., Liu K. D., Huang A. H. Spherosomes of Castor Bean Endosperm: MEMBRANE COMPONENTS, FORMATION, AND DEGRADATION. Plant Physiol. 1980 Jun;65(6):1176–1180. doi: 10.1104/pp.65.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muto S., Beevers H. Lipase Activities in Castor Bean Endosperm during Germination. Plant Physiol. 1974 Jul;54(1):23–28. doi: 10.1104/pp.54.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
- Rungie J. M., Wiskich J. T. Salt-stimulated Adenosine Triphosphatase from Smooth Microsomes of Turnip. Plant Physiol. 1973 Jun;51(6):1064–1068. doi: 10.1104/pp.51.6.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yatsu L. Y., Jacks T. J. Spherosome membranes: half unit-membranes. Plant Physiol. 1972 Jun;49(6):937–943. doi: 10.1104/pp.49.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
