Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Nov;82(3):753–759. doi: 10.1104/pp.82.3.753

Betaine Aldehyde Oxidation by Spinach Chloroplasts 1

Pierre Weigel 1,2, Elizabeth A Weretilnyk 1, Andrew D Hanson 1
PMCID: PMC1056203  PMID: 16665106

Abstract

Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.

Full text

PDF
753

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Fiedler E., Schultz G. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiol. 1985 Sep;79(1):212–218. doi: 10.1104/pp.79.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freeling M. Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specificed by two unlinked genes: differential Adh1-Adh2 expression in maize. Mol Gen Genet. 1973 Dec 31;127(3):215–227. doi: 10.1007/BF00333761. [DOI] [PubMed] [Google Scholar]
  5. Gottlieb L. D. Conservation and duplication of isozymes in plants. Science. 1982 Apr 23;216(4544):373–380. doi: 10.1126/science.216.4544.373. [DOI] [PubMed] [Google Scholar]
  6. Hanson A. D., May A. M., Grumet R., Bode J., Jamieson G. C., Rhodes D. Betaine synthesis in chenopods: Localization in chloroplasts. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3678–3682. doi: 10.1073/pnas.82.11.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haubrich D. R., Gerber N. H. Choline dehydrogenase. Assay, properties and inhibitors. Biochem Pharmacol. 1981 Nov 1;30(21):2993–3000. doi: 10.1016/0006-2952(81)90265-3. [DOI] [PubMed] [Google Scholar]
  8. Imhoff J. F., Rodriguez-Valera F. Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol. 1984 Oct;160(1):478–479. doi: 10.1128/jb.160.1.478-479.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohta-Fukuyama M., Miyake Y., Emi S., Yamano T. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp. J Biochem. 1980 Jul;88(1):197–203. [PubMed] [Google Scholar]
  10. Pan S. M., Moreau R. A., Yu C., Huang A. H. Betaine accumulation and betaine-aldehyde dehydrogenase in spinach leaves. Plant Physiol. 1981 Jun;67(6):1105–1108. doi: 10.1104/pp.67.6.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  12. ROTHSCHILD H. A., BARRON E. S. G. The oxidation of betaine aldehyde by betaine aldehyde dehydrogenase. J Biol Chem. 1954 Aug;209(2):511–523. [PubMed] [Google Scholar]
  13. Shaw C. R., Prasad R. Starch gel electrophoresis of enzymes--a compilation of recipes. Biochem Genet. 1970 Apr;4(2):297–320. doi: 10.1007/BF00485780. [DOI] [PubMed] [Google Scholar]
  14. Stitt M., Bulpin P. V., ap Rees T. Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Biochim Biophys Acta. 1978 Nov 15;544(1):200–214. doi: 10.1016/0304-4165(78)90223-4. [DOI] [PubMed] [Google Scholar]
  15. Weeden N. F., Gottlieb L. D. Isolation of cytoplasmic enzymes from pollen. Plant Physiol. 1980 Sep;66(3):400–403. doi: 10.1104/pp.66.3.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilken D. R., McMacken M. L., Rodriquez A. Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim Biophys Acta. 1970 Sep 1;216(2):305–317. doi: 10.1016/0005-2728(70)90222-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES