Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Nov;82(3):760–764. doi: 10.1104/pp.82.3.760

The Fate of Chloroplast Proteins during Photooxidation in Carotenoid-Deficient Maize Leaves 1

Stephen P Mayfield 1,2, Timothy Nelson 1,3, William C Taylor 1
PMCID: PMC1056204  PMID: 16665107

Abstract

Maize seedlings, treated with the herbicide norflurazon to produce a deficiency in carotenoid pigments, were grown in low-fluence-rate light. Under these conditions, which induced chlorophyll biosynthesis while minimizing photooxidation, carotenoid-deficient seedlings showed identical patterns of chloroplast protein accumulation compared with normal seedlings. Carotenoid pigments thus play no direct role in regulating the accumulation of chloroplast proteins. When shifted to high-fluence-rate light, chlorophyll was rapidly photooxidized in carotenoid-deficient seedlings. Chloroplast proteins showed varying degrees of sensitivity to photooxidation. The P-700 apoprotein of photosystem I was rapidly degraded. Most stromal and thylakoid proteins either decreased progressively in photooxidative conditions or appeared to be unaffected. The relative quantity of the light-harvesting chlorophyll a/b-binding protein of photosystem II increased significantly in the first few hours of high-fluence-rate light. It then appeared to be only minimally affected 18 hours after complete photooxidation of chlorophyll.

Full text

PDF
760

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson I. C., Robertson D. S. Role of Carotenoids in Protecting Chlorophyll From Photodestruction. Plant Physiol. 1960 Jul;35(4):531–534. doi: 10.1104/pp.35.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachmann M. D., Robertson D. S., Bowen C. C., Anderson I. C. Chloroplast development in pigment deficient mutants of maize. I. Structural anomalies in plastids of allelic mutants at the w3 locus. J Ultrastruct Res. 1967 Nov;21(1):41–60. doi: 10.1016/s0022-5320(67)80005-4. [DOI] [PubMed] [Google Scholar]
  4. Bachmann M. D., Robertson D. S., Bowen C. C., Anderson I. C. Chloroplast ultrastructure in pigment-deficient mutants of Zea mays under reduced light. J Ultrastruct Res. 1973 Dec;45(5):384–406. doi: 10.1016/s0022-5320(73)80069-3. [DOI] [PubMed] [Google Scholar]
  5. Bartels P. G., Hyde A. Chloroplast Development in 4-Chloro-5-(dimethylamino)-2-(alpha,alpha,alpha-trifluoro-m-tolyl)-3 (2H)-pyridazinone (Sandoz 6706)-treated Wheat Seedlings: A Pigment, Ultrastructural, and Ultracentrifugal Study. Plant Physiol. 1970 Jun;45(6):807–810. doi: 10.1104/pp.45.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Batschauer A., Mösinger E., Kreuz K., Dörr I., Apel K. The implication of a plastid-derived factor in the transcriptional control of nuclear genes encoding the light-harvesting chlorophyll a/b protein. Eur J Biochem. 1986 Feb 3;154(3):625–634. doi: 10.1111/j.1432-1033.1986.tb09444.x. [DOI] [PubMed] [Google Scholar]
  7. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  8. Blume D. E., McClure J. W. Developmental Effects of Sandoz 6706 on Activities of Enzymes of Phenolic and General Metabolism in Barley Shoots Grown in the Dark or under Low or High Intensity Light. Plant Physiol. 1980 Feb;65(2):238–244. doi: 10.1104/pp.65.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins P. D., Hague D. R. Light-stimulated synthesis of NADP malic enzyme in leaves of maize. J Biol Chem. 1983 Mar 25;258(6):4012–4018. [PubMed] [Google Scholar]
  10. Epel B. L., Neumann J. The mechanism of the oxidation of ascorbate and MN2+ by chloroplasts. The role of the radical superoxide. Biochim Biophys Acta. 1973 Dec 14;325(3):520–529. doi: 10.1016/0005-2728(73)90211-9. [DOI] [PubMed] [Google Scholar]
  11. Feierabend J., Winkelhüsener T. Nature of photooxidative events in leaves treated with chlorosis-inducing herbicides. Plant Physiol. 1982 Nov;70(5):1277–1282. doi: 10.1104/pp.70.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRIFFITHS M., SISTROM W. R., COHENBAZIRE G., STANIER R. Y., CALVIN M. Function of carotenoids in photosynthesis. Nature. 1955 Dec 24;176(4495):1211–1215. doi: 10.1038/1761211a0. [DOI] [PubMed] [Google Scholar]
  13. Harbour J. R., Bolton J. R. Superoxide formation in spinach chloroplasts: electron spin resonance detection by spin trapping. Biochem Biophys Res Commun. 1975 Jan 2;64(3):803–807. doi: 10.1016/0006-291x(75)90118-7. [DOI] [PubMed] [Google Scholar]
  14. Hurt E., Hauska G. A cytochrome f/b6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur J Biochem. 1981 Jul;117(3):591–595. doi: 10.1111/j.1432-1033.1981.tb06379.x. [DOI] [PubMed] [Google Scholar]
  15. Jabben M., Deitzer G. F. Effects of the herbicide san 9789 on photomorphogenic responses. Plant Physiol. 1979 Mar;63(3):481–485. doi: 10.1104/pp.63.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lam E., Oritz W., Mayfield S., Malkin R. Isolation and Characterization of a Light-Harvesting Chlorophyll a/b Protein Complex Associated with Photosystem I. Plant Physiol. 1984 Mar;74(3):650–655. doi: 10.1104/pp.74.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayfield S. P., Taylor W. C. Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem. 1984 Oct 1;144(1):79–84. doi: 10.1111/j.1432-1033.1984.tb08433.x. [DOI] [PubMed] [Google Scholar]
  18. Mullet J. E., Burke J. J., Arntzen C. J. Chlorophyll proteins of photosystem I. Plant Physiol. 1980 May;65(5):814–822. doi: 10.1104/pp.65.5.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Troxler R. F., Lester R., Craft F. O., Albright J. T. Plastid development in albescent maize. Plant Physiol. 1969 Nov;44(11):1609–1618. doi: 10.1104/pp.44.11.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES