Abstract
Incubation of barley (Hordeum vulgare L. cv Himalaya) half-seeds with gibberellic acid enhances the secretion of ribonuclease and deoxyribonuclease from aleurone tissue (MJ Chrispeels, JE Varner 1967 Plant Physiol 42: 398-406; L Taiz, JE Starks 1977 Plant Physiol 60: 182-189). These activities were over 50-fold greater in medium of half-seeds incubated with gibberellic acid than in control medium. Ribonuclease and deoxyribonuclease activities initially appeared in the medium 24 to 48 hours after hormone induction and increased for up to 96 hours. Both activities had a pH optimum of 6.0 and a temperature optimum of 55°C. When the medium from gibberellic acid-treated half-seeds was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the major ribonuclease and deoxyribonuclease activity bands comigrated. The two enzyme activities remained associated throughout a 2,700-fold purification employing ammonium sulfate fractionation, Heparin-Agarose affinity chromatography, and Reactive Blue 2-Agarose affinity chromatography. Also accompanying the ribonuclease and deoxyribonuclease activities throughout purification was the ability to hydrolyze the 3′-phosphoester linkage of 3′-AMP. The purified protein was composed of a single polypeptide with an apparent molecular weight of 36 kilodaltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It is concluded that in response to gibberellic acid, barley aleurone tissue secretes a nuclease having ribonuclease, deoxyribonuclease, and 3′-nucleotidase activities.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerton R. W., Ho T. H. Hormonal regulation of the development of protease and carboxypeptidase activities in barley aleurone layers. Plant Physiol. 1986 Mar;80(3):692–697. doi: 10.1104/pp.80.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson D. M., Fairley J. L. Enzymes of nucleic acid metabolism from wheat seedlings. I. Purification and general properties of associated deoxyribonuclease, ribonuclease, and 3'-nucleotidase activities. J Biol Chem. 1969 May 10;244(9):2440–2449. [PubMed] [Google Scholar]
- Jacobsen J. V., Varner J. E. Gibberellic Acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol. 1967 Nov;42(11):1596–1600. doi: 10.1104/pp.42.11.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson P. H., Laskowski M., Sr Mung bean nuclease I. II. Resistance of double stranded deoxyribonucleic acid and susceptibility of regions rich in adenosine and thymidine to enzymatic hydrolysis. J Biol Chem. 1970 Feb 25;245(4):891–898. [PubMed] [Google Scholar]
- Kowalski D., Kroeker W. D., Laskowski M., Sr Mung bean nuclease I. Physical, chemical, and catalytic properties. Biochemistry. 1976 Oct 5;15(20):4457–4463. doi: 10.1021/bi00665a019. [DOI] [PubMed] [Google Scholar]
- Kroeker W. D., Hanson D. M., Fairley J. L. Activity of wheat seedling nuclease toward single-stranded nucleic acids. J Biol Chem. 1975 May 25;250(10):3767–3772. [PubMed] [Google Scholar]
- Kroeker W. D., Kowalski D., Laskowski M., Sr Mung bean nuclease I. Terminally directed hydrolysis of native DNA. Biochemistry. 1976 Oct 5;15(20):4463–4467. doi: 10.1021/bi00665a020. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:230–239. doi: 10.1016/s0076-6879(83)96021-4. [DOI] [PubMed] [Google Scholar]
- Mikulski A. J., Laskowski M., Sr Mung bean nuclease I. 3. Purification procedure and (3') omega monophosphatase activity. J Biol Chem. 1970 Oct 10;245(19):5026–5031. [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Oleson A. E., Janski A. M., Clark E. T. An extracellular nuclease from suspension cultures of tobacco. Biochim Biophys Acta. 1974 Sep 27;366(1):89–100. doi: 10.1016/0005-2787(74)90321-9. [DOI] [PubMed] [Google Scholar]
- Pietrzak M., Cudny H., Małuszynski M. Purification and properties of two ribonucleases and a nuclease from barley seeds. Biochim Biophys Acta. 1980 Jul 10;614(1):102–112. doi: 10.1016/0005-2744(80)90171-0. [DOI] [PubMed] [Google Scholar]
- Taiz L., Starks J. E. Gibberellic Acid enhancement of DNA turnover in barley aleurone cells. Plant Physiol. 1977 Aug;60(2):182–189. doi: 10.1104/pp.60.2.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON C. M. Chromatographic separation of ribonucleases in corn. Biochim Biophys Acta. 1963 Feb 26;68:177–184. doi: 10.1016/0006-3002(63)90133-1. [DOI] [PubMed] [Google Scholar]
- Wilson C. M. Plant nucleases. I. Separation and purification of two ribonucleases and one nuclease from corn. Plant Physiol. 1968 Sep;43(9):1332–1338. doi: 10.1104/pp.43.9.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. M. Plant nucleases: biochemistry and development of multiple molecular forms. Isozymes Curr Top Biol Med Res. 1982;6:33–54. [PubMed] [Google Scholar]
- Woodward J. R., Fincher G. B. Purification and chemical properties of two 1,3;1,4-beta-glucan endohydrolases from germinating barley. Eur J Biochem. 1982 Jan;121(3):663–669. doi: 10.1111/j.1432-1033.1982.tb05837.x. [DOI] [PubMed] [Google Scholar]
- Wyen N. V., Erdei S., Farkas G. L. Isolation from Avena leaf tissues of a nuclease with the same type of specificity towards RNA and DNA. Accumulation of the enzyme during leaf senescence. Biochim Biophys Acta. 1971 Mar 25;232(3):472–483. doi: 10.1016/0005-2787(71)90601-0. [DOI] [PubMed] [Google Scholar]