Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Dec;82(4):909–915. doi: 10.1104/pp.82.4.909

Evidence for Phytochrome Regulation of Gibberellin A20 3β-Hydroxylation in Shoots of Dwarf (lele) Pisum sativum L. 1

Bruce R Campell 1, Bruce A Bonner 1
PMCID: PMC1056232  PMID: 16665165

Abstract

The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA20), the product (GA1), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA1 under red irradiation and in darkness. The lele plants grew in response to GA20 and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA20 and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3β-hydroxylation of GA20 to GA1 in genotype lele is due to a Pfr-induced blockage in the expression of that activity.

Full text

PDF
909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kende H., Lang A. Gibberellins and Light Inhibition of Stem Growth in Peas. Plant Physiol. 1964 May;39(3):435–440. doi: 10.1104/pp.39.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lance B., Durley R. C., Reid D. M., Thorpe T. A., Pharis R. P. Metabolism of [H]Gibberellin A(20) in Light- and Dark-grown Tobacco Callus Cultures. Plant Physiol. 1976 Sep;58(3):387–392. doi: 10.1104/pp.58.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lockhart J. A. Studies on the Mechanism of Stem Growth Inhibition by Visible Radiation. Plant Physiol. 1959 Jul;34(4):457–460. doi: 10.1104/pp.34.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Reid J. B. Internode length in pisum: do the internode length genes effect growth in dark-grown plants? Plant Physiol. 1983 Jul;72(3):759–763. doi: 10.1104/pp.72.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES