Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Jan;83(1):131–136. doi: 10.1104/pp.83.1.131

Assimilate Unloading from Maize (Zea mays L.) Pedicel Tissues 1

I. Evidence for Regulation of Unloading by Cell Turgor

Gregory A Porter 1,2,2, Daniel P Knievel 1,2, Jack C Shannon 1,2
PMCID: PMC1056311  PMID: 16665188

Abstract

Sugar and 14C-assimilate release from the pedicel tissue of attached maize (Zea mays L.) kernels was studied following treatment with solute concentrations of up to 800 millimolal. Exposure and collection times ranged from 3 to 6 hours. Sugar and 14C-assimilate unloading and collection in agar traps was reduced by 25 and 43%, respectively, following exposure to 800 millimolal mannitol. Inhibition of unloading was not specific to mannitol, since similar concentrations of glucose, fructose, or equimolar glucose plus fructose resulted in comparable inhibition. Ethylene glycol, a rapidly permeating solute which should not greatly influence cell turgor, did not inhibit 14C-assimilate unloading. Based on these results, we suggest that inhibition of unloading by high concentrations of sugar or mannitol was due to reduced pedicel cell turgor. Changes in pedicel cell turgor may play a role in the regulation of assimilate transfer within the maize kernel.

Full text

PDF
131

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Felker F. C., Shannon J. C. Movement of C-labeled Assimilates into Kernels of Zea mays L: III. AN ANATOMICAL EXAMINATION AND MICROAUTORADIOGRAPHIC STUDY OF ASSIMILATE TRANSFER. Plant Physiol. 1980 May;65(5):864–870. doi: 10.1104/pp.65.5.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Giaquinta R. T., Lin W., Sadler N. L., Franceschi V. R. Pathway of Phloem unloading of sucrose in corn roots. Plant Physiol. 1983 Jun;72(2):362–367. doi: 10.1104/pp.72.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gifford R. M., Thorne J. H., Hitz W. D., Giaquinta R. T. Crop productivity and photoassimilate partitioning. Science. 1984 Aug 24;225(4664):801–808. doi: 10.1126/science.225.4664.801. [DOI] [PubMed] [Google Scholar]
  4. Gifford R. M., Thorne J. H. Sucrose Concentration at the Apoplastic Interface between Seed Coat and Cotyledons of Developing Soybean Seeds. Plant Physiol. 1985 Apr;77(4):863–868. doi: 10.1104/pp.77.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greenway H., Leahy M. Effects of rapidly and slowly permeating osmotica on metabolism. Plant Physiol. 1970 Aug;46(2):259–262. doi: 10.1104/pp.46.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Porter G. A., Knievel D. P., Shannon J. C. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue. Plant Physiol. 1985 Mar;77(3):524–531. doi: 10.1104/pp.77.3.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shannon J. C. Movement of C-Labeled Assimilates into Kernels of Zea mays L: I. Pattern and Rate of Sugar Movement. Plant Physiol. 1972 Feb;49(2):198–202. doi: 10.1104/pp.49.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shannon J. C. Movement of C-Labeled Assimilates into Kernels of Zea mays L: II. Invertase Activity of the Pedicel and Placento-Chalazal Tissues. Plant Physiol. 1972 Feb;49(2):203–206. doi: 10.1104/pp.49.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thorne J. H., Rainbird R. M. An in vivo technique for the study of Phloem unloading in seed coats of developing soybean seeds. Plant Physiol. 1983 May;72(1):268–271. doi: 10.1104/pp.72.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES