Abstract
Uracil-DNA glycosylase activities from etiolated Zea mays seedling nuclei and mitochondria were partially purified and characterized. Nuclei and mitochondria were separated using sucrose differential and step gradient centrifugation. Experiments with osmotically shocked organelles indicated that enzyme activity from mitochondria was soluble, whereas nuclear enzyme activity was only partially soluble under the conditions tested. Purification using DEAE-cellulose and Affigel Blue column chromatography yielded distinct elution profiles from both columns for each of the organellar enzyme activities. Final purification was 490- and 850- fold for the nuclear and mitochondrial uracil-DNA glycosylase, respectively. Characterization studies demonstrated significant differences between the nuclear and mitochondrial uracil-DNA glycosylase with respect to Km, temperature, and pH activity optimum, the effect of salts, and substrate preference. Molecular weight as determined by gel filtration was 18,000 for enzymes from both sources. Both were also sensitive to the sulfhydryl group-blocking agent N-ethylmaleimide. A number of uracil analogs were tested for their ability to inhibit nuclear and mitochondrial uracil-DNA glycosylase activities. 5-Azauracil, uracil, 6-aminouracil, 6-azauracil, 5-aminouracil, and 5-fluorouracil all inhibited both activities to variable degrees.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. T., Friedberg E. C. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 1980 Feb 25;8(4):875–888. [PMC free article] [PubMed] [Google Scholar]
- Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaisdell P., Warner H. Partial purification and characterization of a uracil-DNA glycosylase from wheat germ. J Biol Chem. 1983 Feb 10;258(3):1603–1609. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brambl R. Mitochondrial biogenesis during fungal spore germination. Development of cytochrome c oxidase activity. Arch Biochem Biophys. 1977 Jul;182(1):273–281. doi: 10.1016/0003-9861(77)90308-3. [DOI] [PubMed] [Google Scholar]
- Caradonna S. J., Cheng Y. C. Uracil DNA-glycosylase. Purification and properties of this enzyme isolated from blast cells of acute myelocytic leukemia patients. J Biol Chem. 1980 Mar 25;255(6):2293–2300. [PubMed] [Google Scholar]
- Chua N. H., Schmidt G. W. Transport of proteins into mitochondria and chloroplasts. J Cell Biol. 1979 Jun;81(3):461–483. doi: 10.1083/jcb.81.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone R., Duncan J., Hamilton L., Friedberg E. C. Partial purification and characterization of a uracil DNA N-glycosidase from Bacillus subtilis. Biochemistry. 1977 Jul 12;16(14):3194–3201. doi: 10.1021/bi00633a024. [DOI] [PubMed] [Google Scholar]
- Geider K. DNA synthesis in nucleotide-permeable Escherichia coli cells. The effects of nucleotide analogues on DNA synthesis. Eur J Biochem. 1972 Jun 9;27(3):554–563. doi: 10.1111/j.1432-1033.1972.tb01872.x. [DOI] [PubMed] [Google Scholar]
- Koontz S. W., Schimmel P. R. Aminoacyl-tRNA synthetase-catalyzed cleavage of the glycosidic bond of 5-halogenated uridines. J Biol Chem. 1979 Dec 25;254(24):12277–12280. [PubMed] [Google Scholar]
- Krokan H., Wittwer C. U. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 1981 Jun 11;9(11):2599–2613. doi: 10.1093/nar/9.11.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leblanc J. P., Laval J. Comparison at the molecular level of uracil-DNA glycosylases from different origins. Biochimie. 1982 Aug-Sep;64(8-9):735–738. doi: 10.1016/s0300-9084(82)80120-x. [DOI] [PubMed] [Google Scholar]
- Leblanc J. P., Martin B., Cadet J., Laval J. Uracil-DNA glycosylase. Purification and properties of uracil-DNA glycosylase from Micrococcus luteus. J Biol Chem. 1982 Apr 10;257(7):3477–3483. [PubMed] [Google Scholar]
- Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
- Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
- Lonsdale D. M., Thompson R. D., Hodge T. P. The integrated forms of the S1 and S2 DNA elements of maize male sterile mitochondrial DNA are flanked by a large repeated sequence. Nucleic Acids Res. 1981 Aug 11;9(15):3657–3669. doi: 10.1093/nar/9.15.3657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau F., Lance C. Isolement et propriétés des membranes externes et internes de mitochondries végétales. Biochimie. 1972;54(10):1335–1348. doi: 10.1016/s0300-9084(72)80074-9. [DOI] [PubMed] [Google Scholar]
- Prior J. J., Maley J., Santi D. V. Adducts across the 5,6-double bond of pyrimidines. The mechanism of dehydration of 1-substituted uracil photohydrates. J Biol Chem. 1984 Feb 25;259(4):2422–2428. [PubMed] [Google Scholar]
- Prior J. J., Santi D. V. On the mechanism of the acid-catalyzed hydrolysis of uridine to uracil. Evidence for 6-hydroxy-5,6-dihydrouridine intermediates. J Biol Chem. 1984 Feb 25;259(4):2429–2434. [PubMed] [Google Scholar]
- Radany E. H., Naumovski L., Love J. D., Gutekunst K. A., Hall D. H., Friedberg E. C. Physical mapping and complete nucleotide sequence of the denV gene of bacteriophage T4. J Virol. 1984 Dec;52(3):846–856. doi: 10.1128/jvi.52.3.846-856.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatz G., Butow R. A. How are proteins imported into mitochondria? Cell. 1983 Feb;32(2):316–318. doi: 10.1016/0092-8674(83)90450-6. [DOI] [PubMed] [Google Scholar]
- Talpaert-Borlé M., Clerici L., Campagnari F. Isolation and characterization of a uracil-DNA glycosylase from calf thymus. J Biol Chem. 1979 Jul 25;254(14):6387–6391. [PubMed] [Google Scholar]
- Tye B. K., Chien J., Lehman I. R., Duncan B. K., Warner H. R. Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1978 Jan;75(1):233–237. doi: 10.1073/pnas.75.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valerie K., Henderson E. E., deRiel J. K. Identification, physical map location and sequence of the denV gene from bacteriophage T4. Nucleic Acids Res. 1984 Nov 12;12(21):8085–8096. doi: 10.1093/nar/12.21.8085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wovcha M. G., Warner H. R. Synthesis and nucleolytic degradation of uracil-containing deoxyribonucleic acid by Escherichia coli deoxyribonucleic acid polymerase. I. J Biol Chem. 1973 Mar 10;248(5):1746–1750. [PubMed] [Google Scholar]