Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Mar;83(3):541–545. doi: 10.1104/pp.83.3.541

Selective Solubilization of Membrane Proteins Differentially Labeled by p-Chloromercuribenzenesulfonic Acid in the Presence of Sucrose 1

Bertrand M'Batchi 1,2, Dominique Pichelin 1,2,2, Serge Delrot 1,2
PMCID: PMC1056401  PMID: 16665285

Abstract

Broadbean (Vicia faba L.) leaf discs have been incubated with the slowly permeant thiol reagent [203Hg]-para-chloromercuribenzenesulfonic acid (PCMBS) in the presence or in the absence of sucrose, and the release of PCMBS-labeled proteins has been monitored in media containing various concentrations of urea, ethyleneglycol-bis-(β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA), sodium cholate, sodium dodecyl sulfate, Triton X-100, octylglucoside or (3-[3-cholamidopropyl)-dimethylammonio] 1-propane-sulfonate) (CHAPS). The proteins differentially labeled by PCMBS in the presence of sucrose which, on the basis of previous results, are assumed to include the sucrose carrier, were preferentially solubilized by 1% CHAPS, 1% octylglucoside, or 1% Triton X-100. Other PCMBS-labeled proteins (`background' proteins) could be partially removed by EGTA, urea, or 0.1% cholate. Sequential treatment by 10 mm EGTA and 1% CHAPS was found to give a fraction highly enriched in the differentially labeled proteins. Analysis of the specific activity of microsomal pellets suggests that the results obtained with leaf discs give a good account of what is occurring at the plasma membrane level. These data, which suggest that the proteins differentially labeled by PCMBS in the presence of sucrose are intrinsic membrane proteins, can be used to solubilize these proteins from microsomal fractions.

Full text

PDF
541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M. Release of Sucrose from Vicia faba L. Leaf Discs. Plant Physiol. 1983 Feb;71(2):333–340. doi: 10.1104/pp.71.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Eytan G. D. Use of liposomes for reconstitution of biological functions. Biochim Biophys Acta. 1982 Oct 20;694(2):185–202. doi: 10.1016/0304-4157(82)90024-7. [DOI] [PubMed] [Google Scholar]
  4. Giaquinta R. Evidence for Phloem loading from the apoplast: chemical modification of membrane sulfhydryl groups. Plant Physiol. 1976 Jun;57(6):872–875. doi: 10.1104/pp.57.6.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  6. Henderson P. J., Bradley S., Macpherson A. J., Horne P., Davis E. O., Daruwalla K. R., Jones-Mortimer M. C. Sugar-proton transport systems of Escherichia coli. Biochem Soc Trans. 1984 Apr;12(2):146–148. doi: 10.1042/bst0120146. [DOI] [PubMed] [Google Scholar]
  7. M'batchi B., Delrot S. Parachloromercuribenzenesulfonic Acid : a potential tool for differential labeling of the sucrose transporter. Plant Physiol. 1984 May;75(1):154–160. doi: 10.1104/pp.75.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. M'batchi B., Pichelin D., Delrot S. The Effect of Sugars on the Binding of [Hg]-p-Chloromercuribenzenesulfonic Acid to Leaf Tissues. Plant Physiol. 1985 Oct;79(2):537–542. doi: 10.1104/pp.79.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Simonds W. F., Koski G., Streaty R. A., Hjelmeland L. M., Klee W. A. Solubilization of active opiate receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4623–4627. doi: 10.1073/pnas.77.8.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yoshida S., Uemura M., Niki T., Sakai A., Gusta L. V. Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol. 1983 May;72(1):105–114. doi: 10.1104/pp.72.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES