Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Mar;83(3):557–563. doi: 10.1104/pp.83.3.557

Hevea Linamarase—A Nonspecific β-Glycosidase 1

Dirk Selmar 1,2, Reinhard Lieberei 1,2, Böle Biehl 1,2, Jürgen Voigt 1,2
PMCID: PMC1056404  PMID: 16665288

Abstract

In the leaf tissue of the cyanogenic plant Hevea brasiliensis, which contains large amounts of linamarin, there is no specific linamarase. In Hevea leaves only one β-glucosidase is detectable. It is responsible for the cleavage of all β-glucosides and β-galactosides occurring in Hevea leaf tissue, including the cyanogenic glucoside linamarin. Therefore, the enzyme is referred to as a β-glycosidase instead of the term β-glucosidase. This β-glycosidase has a broad substrate spectrum and occurs in multiple forms. These homo-oligomeric forms are interconvertible by dissociation-association processes. The monomer is a single protein of 64 kilodaltons.

Full text

PDF
557

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briggs G. E., Haldane J. B. A Note on the Kinetics of Enzyme Action. Biochem J. 1925;19(2):338–339. doi: 10.1042/bj0190338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hughes M. A., Maher E. P. Studies on the nature of the Li locus in Trifolium repens L. I. Purification and properties of the enzyme components. Biochem Genet. 1973 Jan;8(1):1–12. doi: 10.1007/BF00485552. [DOI] [PubMed] [Google Scholar]
  3. Hósel W., Barz W. Beta-Glucosidases from Cicer arietinum L. Purification and Properties of isoflavone-7-O-glucoside-specific beta-glucosidases. Eur J Biochem. 1975 Sep 15;57(2):607–616. doi: 10.1111/j.1432-1033.1975.tb02336.x. [DOI] [PubMed] [Google Scholar]
  4. Hösel W., Nahrstedt A. Spezifische Glucosidasen für das Cyanglucosid Triglochinin Reinigung und Charakterisierung von beta-Glucosidasen aus Alocasia macrorrhiza Schott. Hoppe Seylers Z Physiol Chem. 1975 Aug;356(8):1265–1275. [PubMed] [Google Scholar]
  5. Hösel W., Surholt E., Borgmann E. Characterization of beta-glucosidase isoenzymes possibly involved in lignification from chick pea (Cicer arietinum L.) cell suspension cultures. Eur J Biochem. 1978 Mar 15;84(2):487–492. doi: 10.1111/j.1432-1033.1978.tb12190.x. [DOI] [PubMed] [Google Scholar]
  6. KOSUGE T., CONN E. E. The metabolism of aromatic compounds in higher plants. III. The beta-glucosides of o-coumaric, coumarinic, and melilotic acids. J Biol Chem. 1961 Jun;236:1617–1621. [PubMed] [Google Scholar]
  7. Legler G. Inhibition of beta-glucosidases from almonds by cationic and neutral beta-glucosyl derivatives. Biochim Biophys Acta. 1978 May 11;524(1):94–101. doi: 10.1016/0005-2744(78)90107-9. [DOI] [PubMed] [Google Scholar]
  8. Livingston D. M. Immunoaffinity chromatography of proteins. Methods Enzymol. 1974;34:723–731. doi: 10.1016/s0076-6879(74)34094-3. [DOI] [PubMed] [Google Scholar]
  9. Marcinowski S., Grisebach H. Enzymology of lignification. Cell-wall bound beta-glucosidase for coniferin from spruce (Picea abies) seedlings. Eur J Biochem. 1978 Jun 1;87(1):37–44. doi: 10.1111/j.1432-1033.1978.tb12349.x. [DOI] [PubMed] [Google Scholar]
  10. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  11. Wilchek M., Jakoby W. B. The literature on affinity chromatography. Methods Enzymol. 1974;34:3–10. doi: 10.1016/s0076-6879(74)34004-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES